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Abstract

In this paper, we focus on a numerical method of a problem called the Perona-Malik inequality which we use for
image denoising. This model is obtained as the limit of the Perona-Malik model and the p-Laplacian operator with
p → ∞. In Atlas et al., (Nonlinear Anal. Real World Appl 18:57–68, 2014), the authors have proved the existence and
uniqueness of the solution of the proposed model. However, in their work, they used the explicit numerical scheme
for approximated problem which is strongly dependent to the parameter p. To overcome this, we use in this work an
efficient algorithm which is a combination of the classical additive operator splitting and a nonlinear relaxation
algorithm. At last, we have presented the experimental results in image filtering show, which demonstrate the
efficiency and effectiveness of our algorithm and finally, we have compared it with the previous scheme presented in
Atlas et al., (Nonlinear Anal. Real World Appl 18:57–68, 2014).
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1 Introduction
Image denoising is one of the fundamental challenges
in the field of image processing and computer vision.
The aim is to remove noise while preserving edges,
boundaries, and textures. To handle this problem, partial
differential equations [1–7], variational models [8–11],
energy minimization, bilateral filtering [12, 13], and
wavelet thresholding [14, 15] have been proposed depend-
ing on the domain of applications. Generally, the partial
differential equations use a nonlinear anisotropic diffu-
sion to restore a degraded image which they seek to
improve its quality by removing noise while preserving
details and even enhancing edges.
In 1990, Perona-Malik [2] proposed a nonlinear dif-

fusion equation that succeeded in image denoising.
Although, this model is an ill-posed problem in ana-
lytical point of view, besides, the numerical simulations
produce the staircase effect. This paradoxical result has
been named as the Perona-Malik Paradox [16]. Motivated
by the ill-posedness of the Perona-Malik model, many
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works (see for instance [17–19]) suggest to introducing
the regularization in space and/or time. Using the spatial
convolution inside the anisotropic diffusion and replacing
the diffusivity by a slight variation, new modified mod-
els have been proposed, but they produce an undesirable
blurring effect. Otherwise, some new class of backward-
forward regularizations has been introduced. In [20], the
authors combine the Perona-Malik with a Laplacian oper-
ator and develop a new effective model, and they make a
generalization of their results by replacing the Laplacian
with a nonlinear p-Laplacian operator for p ∈ (1, 2] (cf.
[21]). Recently, in [22], the authors proposed a new regu-
larization based on the previous interpolation of Perona-
Malik and p-Laplacian with large value of p. Their model
is well posed, it reduces the staircase effect and avoids
creating new features in the image, they have also done a
study of the limiting problem. For a numerical purpose,
the authors used an explicit finite difference schemewhich
is unstable and the condition of stability depends on the
parameter p.
In this paper, we develop a numerical semi-implicit

method approaching the Perona-Malik inequality by using
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a splitting method [23]. The idea is to decompose the limit
problem into two operators:

• The Perona-Malik operator which will be treated by
the additive operator schemes [24].

• The second is called the sub-differential flow, where
we use the Euler implicit discretization as well as we
develop a dual formulation associated to the
minimization problem [25].

The rest of this paper is organized as follows. In the next
Section 2, we provide reviews of some previous works that
are Perona-Malik model, p-Laplacian equation and their
interpolation. In Section 3, we present a new numerical
scheme using an operator splitting algorithm that splits
the Perona-Malik inequality in two sub-models treated by
additive operator schemes and dual formulation, respec-
tively. Finally, some numerical simulations are given to
demonstrate the effectiveness of the proposed algorithm.

2 Reviews of some previous works
In this section, we recall some previous models. Let T > 0
be a fixed time, f the intensity of the noisy image, u the
desired clean image that was corrupted with the noise n
such that f = u + n, and let � be a bounded picture
domain with smooth boundary �.

2.1 Perona-Malik model
The Perona-Malik model is a powerful model and widely
used in image denoising. Hence, the idea behind this
model is to improve the results obtained by the PDE heat
and to change the equation by introducing the edge detec-
tion process (the diffusivity coefficient). Perona-Malik
problem is obtained by solving the following anisotropic
diffusion equation with a Neumann boundary condition:

⎧
⎨

⎩

ut − div
(
g (|∇u|)∇u

) = 0 in Q := (0,T) × �,
∇u.�n = 0 in � := (0,T) × �,
u(x, 0) = f in �.

The diffusion function g is an edge indicator function
that controls the diffusion process by reducing the effect
of diffusion near edges and behaves locally as the heat
equation. Typical choices of g are:

g(t) = 1
1 + ( t

λ

)2 or g(t) = exp
(

− t2

2 λ2

)

,

where λ > 1 is a threshold parameter that determines the
size of the gradients which will be preserved and g is a
decreasing function worth λ where |∇u| is close to 0 and
tend to 0 for large |∇u|. Note that if g(.) ≡ 1, we recover
the heat equation. For the diffusivity function g, it follows
the flux function �(t) = tg(t) which satisfies �′(t) ≥ 0
for |t| ≤ λ and �′(t) ≥ 0 for |t| ≤ λ.
We observe from the Fig. 1b that the Perona–Malik

model is a forward parabolic type for |t| ≥ λ and a back-
ward parabolic type for |t| ≤ λ. This model is an ill-posed
problem from the mathematical point of view and pro-
duces an unwanted phenomena well known by staircase
effect.

2.2 The p-Laplacian equation
To obtain the p-Laplacian equation, we merely replace
the diffusion function g of the Perona–Malik equation by
g(t) = tp−2. The p-Laplacian equation has been proposed
and studied by many authors (see for instance [26]). It
plays an important role in the modeling of many phenom-
ena in different areas such as image processing [27], sand-
pile [28, 29], and fluid mechanic [30]. The evolutionary
p-Laplacian equation can be written as:

⎧
⎨

⎩

ut − div
( |∇u|p−2∇u

) = 0 in Q,
∇u.�n = 0 in �,
u(x, 0) = f in �.

We recall that the case p = 2, the model corresponds
to a well-known heat equation. For p = 1, the equation is

Fig. 1 a Left: diffusivity g(t). b Right: flux function �(t)
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Fig. 2 Images corrupted by Gaussian noise with zero mean and variance σ 2 = 0.025

called total variation and for a large p, the model is known
as the infinite Laplacian.

2.3 Perona-Malik and p-Laplacian model
The staircasing phenomena is a manifestation of the
forward-backward nature of the Perona-malik equation
which appears in its discretization. In order to escape the
backward regime, a novel kind of regularization [20–22]
of the classical Perona-Malik model is proposed for
image processing. This regularization still allows gradi-
ent growth while controls its maximal size which is done
by combining two classical models, Perona-Malik and
p-Laplacian.
Indeed, the following regularization reduces the size

of the backward region and the solutions can flee the
backward region simply by developing small and large
gradients:
⎧
⎨

⎩

ut − div
(
g (|∇u|)∇u

) − 1
λp div

( |∇u|p−2∇u
) = 0 in Q,

∇u.�n = 0 in �,
u(x, 0) = f in �.

(1)

This problem is well posed for a large p, and the exis-
tence and uniqueness of the asymptotic behavior as p →
∞ are established in [22]. Letting p → ∞, the problem (1)
converges to the following model:

⎧
⎨

⎩

ut − div
(
g (|∇u|)∇u

) + ∂IK (u) � 0 in Q
∇u.�n = 0 in �,
u(x, 0) = f in �,

(2)

where

K = {
φ ∈ W 1,r(�) : | ∇φ | ≤ λ a.e. in�

}
,

and IK (.) denotes the indicator functional of the set K, for
all u ∈ W 1,r(�) IK is defined by:

IK (u) =
{
0 if u ∈ K ,
+∞ if u /∈ K .

Thanks to Remark 3.2 of [22], for p > λ2 + 1, the
problem (1) has a unique weak solution up and

for p → ∞, up → u weakly in Lr(0,T ,W 1,r(�))

for all r > 1.

Moreover, u ∈ W ∩ Kt is the unique solution of (2) in
the following sense:

∫ T

0

〈
∂u
∂t

,u − φ

〉

dt +
∫ T

0

∫

�

g(|∇u|)∇u∇(u− φ) ≤ 0,

for any φ ∈ Kt = {ξ ∈ Lr(0,T ;W 1,r(�)) : ξ(t) ∈ K},
having

W =
{

φ ∈ Lr
(
0,T ;W 1,r(�)

)
:
∂φ

∂t

∈ Lr
′ (
0,T ; (W 1,r(�))′

)
}

, r > 1.

Fig. 3 Restored images by using our method
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Fig. 4 Left column, original images;middle column, noisy images corrupted by poissonian noise; right column restored images with λ = 60

For further details and another sophisticated notion of
solutions, we refer to [22]. We remark that the limiting
problem can be rewritten as:

{
ut − div

(
g (|∇u|)∇u

) − f ≤ 0, |∇u| ≤ λ,(
ut − div

(
g (|∇u|)∇u

) − f
)
(|∇u| − λ) = 0,

which is equivalent to solving the Perona-Malik problem
in the region where the norm of the gradient is less than λ.

3 An operator splitting algorithm
The operator splitting methods are very useful to derive
fast algorithms. It is worthwhile to be used when the prob-
lem we want to solve has an additive structure, the main
idea is to split the problem into sub-problems that are eas-
ier to solve by treating its summands separately in each
iteration of the algorithm. To achieve this goal, we use of
the operator splitting algorithm that splits the proposed
model into two equations. The first one corresponds to
solve the following Perona-Malik model:

⎧
⎨

⎩

ut − div
(
g (|∇u|)∇u

) = 0 in Q,
∇u.�n = 0 in �,
u(x, 0) = f in �.

(3)

The second is a diffusion equation associated to the
infinity Laplacian that is given by:

⎧
⎨

⎩

ut + ∂IK (u) � 0 in Q,
∇u.�n = 0 in �,
u(x, 0) = f in �.

(4)

Let N > 0 be given,τ = T/N be the time step,
tn = nτ , n = 0, . . . ,N , and let us consider un an
approximation of u(tn) for all n = 0, . . . ,N .
The basic idea is to discretize the Eq. (2) by using an

implicit scheme for linear terms and an explicit scheme
for the remaining terms. The goal is to reduce the exe-
cution time required to solve the equations by splitting
up the terms in such a way that the stable time step for
the explicit discretization is significantly smaller than the
largest stable time step for the semi-implicit one.
After discretizing (2) with a semi-implicit first order

scheme, we should find un + 1 satisfying:
⎧
⎨

⎩

un+1−un
τ

− div
(
g (|∇un|)∇un+1) + ∂IK (un+1) � 0,

∇un+1.�n = 0,
un = f .

(5)

Fig. 5 Left to right: noisy Barbara image, restored Barbara image by our algorithm, noisy rice image, restored rice image by our algorithm
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Fig. 6 Left to right: noisy Barbara image, restored image by PMPL with p = 12.5, 16.5, and 18.5, respectively

The corresponding discretization of the time splitting
scheme (3)–(4) consists on finding at each time step,
vn + 1

2 satisfying:
⎧
⎪⎪⎨

⎪⎪⎩

vn + 1
2 −vn
τ

− div
(
g (|∇vn|)∇vn + 1

2
)

= 0,

∇vn + 1
2 .�n = 0,

vn = f ,

(6)

followed by finding wn + 1 satisfying:
⎧
⎪⎨

⎪⎩

wn + 1−wn + 1
2

τ
+ ∂IK (wn + 1) � 0

∇wn + 1.�n = 0
wn + 1

2 = vn + 1
2 .

(7)

The Perona-Malik operator has been solved by differ-
ent numerical methods and techniques and methods. To
improve computational efficiency, we discretize (3) by (6)
and we use the additive operator splitting scheme in the
numerical implementation. On the other hand, the sub-
differential Eq. (4), discretized by (7), is formulated as
a minimization that will be solved by the dual formula-
tion [25]. In the sequel, the two numerical methods are
presented.

3.1 Perona-Malik operator
The simplest discretization of the m-dimensional Eq. (6)
with reflecting boundary conditions is given by:

un + 1
2

i − uni
τ

=
m∑

l = 1

∑

j∈Nl(i)

gni + gnj
2.h2

(

un + 1
2

j − un + 1
2

i

)

, (8)

where pixel i represents some location xi, uni and gni
denote, respectively, the approximation of u(xi, tn) and
g(|∇u(xi, tn)|), m is the dimension size and Nl(i) consists

of the two neighbors of pixel i along the l direction for all
l = 1, . . . ,m. In vector-matrix, notation (8) becomes:

un + 1
2 − un

τ
=

m∑

l = 1
Al(un)un + 1

2 .

The system matrix Al(un) is defined as
Al(un) =

[
al,nI,J

]
, where

al,nI,J =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−gnJ∼I [J ∈ Nl(I)] ,
∑

J ∈N−
l (I)

J ∈N+
l (I)

gnJ∼I (J = I),

0 (otherwise).
Therefore, we have:

un + 1
2 =

(

I − τ .
m∑

l = 1
Al(un)

)−1

un. (9)

The modification applied to (9) has been introduced
firstly by [24] named as additive operator splitting (AOS)
scheme which leads us to:

un + 1
2 = 1

m

m∑

l = 1
(I − τ .m.Al(un))−1un. (10)

3.2 The sub-differential flow
The discretization of the problem (7) can be written as:

wn + 1 + ∂IK (wn + 1) � wn + 1
2 for n = 0, . . . ,N . (11)

where ∂f denotes the sub-differential of a given function f.
Thanks to [25], we focus our attention on the projection

wn + 1 = PK
(
wn + 1

2
)
. Indeed,

J
(
wn+1) = 1

2

∥
∥
∥wn+1 − wn+ 1

2
∥
∥
∥
2

L2(�)
= minz∈K J(z), (12)

with J(z) = 1
2

∥
∥
∥z − wn + 1

2

∥
∥
∥
2

L2(�)
.

Table 1 PSNR and SNR values for the noisy and recovered images corresponding to the experiments shown in Figs. 2 and 3

Images a b c d

PSNR SNR PSNR SNR PSNR SNR PSNR SNR

Noisy 20.1753 8.6159 20.2006 7.8502 20.1582 9.8390 20.1338 2.0217

Restored 26.7594 15.2001 23.1807 10.8304 22.8471 12.5279 26.2332 8.1222
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Fig. 7 Left to right: noisy image, restored Barbara image by our method, image obtained by PMPL model with p = 20, the difference image

The dual formulation has been used to deal with this
minimization problem. The dual problem associated with
(12) is given by the following functional:

G(z) =
∫

�

(div(z))2 +
∫

�

wn + 1
2 div(z) + λ

∫

�

|z|. (13)

In order to find the numerical solution of the functional
(13), we denote by zh a minimizer of this functional and
Gh(zh) the approximation of G(z) (see [25] for instance):

Gh(zh) =
∫

�

(div(zh))2 +
∫

�

wn + 1
2

h div(zh)

+λ
∑

τ∈Th

|τ ||zh(Pτ )|, (14)

where τ represents simplex of the partitioning of Th, |τ | is
the area of simplex τ , and Pτ is one of the vertices of τ . In
image processing, |τ | could be seen as discretization step
h2 = 1.
In view of the fact that Gh is nondifferentiable, we use

a relaxation algorithm (see for instance [31] and the refer-
ences therein) to minimize the functional (14) that can be
summarized as follows:

1. Initiate the algorithm with vector q0, set k = 0,
choose a canonical direction ej ∈ Rn.

2. Solving the one-dimensional sub-problems
min
t∈R �jk(t) where �jk is defined as:

�jk : R → R
t → Gh

(
qk + tej

)
. (15)

3. Taking qk + 1 = qk + ωtjk , where ω > 0 is an
over-relaxation parameter.

4. We can use Newton algorithm to find tjk , when �jk is
differentiable. Else, it can be computed directly.

5. The condition to stop this algorithm is
‖qk − qk + 1‖l2(Rn) ≤ ε, for a given convergence
tolerance ε.

At last, in the next section, results of numerical simula-
tions are given.

4 Numerical results and simulations
This section is devoted to extensive numerical experimen-
tations. The program will stop when it achieves our goal.
Most algorithm parameters are chosen heuristically for
the algorithms to perform their best. We set, the spatial
size h = 1 and the parameter ω = 1, 2 of the relax-
ation algorithm. First, we illustrate the efficiency of our
proposed numerical algorithm (cf. Figs. 2, 3, 4, and 5) for
filtering the images corrupted with noise. As a second
experiment, we will keep the same values of the previ-
ous parameters and we test the explicit scheme of the
Perona-Malik and p-Laplacian (PMPL) proposed in [22]
for different values of p Fig. 6. We remark that the PMPL
scheme depends on the parameter p and for a large p,
the restored image has been damaged. In order to avoid
numerical instability, we must take a very small time step.
So that, the needed simulation takes more time due to the
nature of data. For that, in the third test , we evaluate the
performance of our algorithm compared to PMPL scheme

Fig. 8 Left to right: noisy image, restored rice image by our algorithm, image obtained by PMPL method with p = 20, the difference image



Karami et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:46 Page 7 of 9

Table 2 CPU time of our algorithm and PMPL method for the
Barbara and rice images

Images Barbara Rice

Our method 132.86 × 103 ms 27.30 × 103 ms

Explicit schemes 541.82 × 103 ms 121.02 × 103 ms

by using CPU time. The last experiment aims to show the
dependence also of the PMPL scheme to the threshold
parameter λ.
For the improvements tests, we present the restora-

tions and the results of our algorithm by choosing the
parameter λ = 20.
The restored images are clearly better than the noisy

ones; to obtain an objective evaluation of the proposed
method, the peak signal-to-noise ratio (PSNR) is used to
measure the quality of the restoration results which is
defined as:

PSNR = 10 log10

(
2552MN

||u0 − u||22

)

dB,

where u0, u, and M × N are the original image, the
restored image and the size of the image, respectively. To
qualify the restoration capacity of the method under con-
sideration, the signal-to-noise ratio (SNR) is applied and
denoted by:

SNR = log10
(

σu
σn

)

dB,

where σu and σn are the signal and noise standard devia-
tions, respectively. The value of these statistical measures

indicates the strength of signal in restored images. There-
fore, the value increases as the restored version of the
image approaches the original one. In order to better eval-
uate the restoration process, PSNR and SNR values are
shown in the Table 1.
Now, we are testing our method on Barbara and Rice

images corrupted by Gaussian noise with zero mean and
variance σ 2 = 0.03 and using the same parameters (Fig. 5).
The previous tests show the efficiency of ourmethod. To

argue the usage of the proposed algorithm, we will test, in
the second experiment, the PMPLmodel using the explicit
scheme proposed in [22] by using the same parameters of
the previous test. We take different values of p to study its
impact on the image restoration.
Figure 6 shows that the PMPL method has restored the

image, but when p becomes large, the images are damaged
due to the problem of stability which depends on the value
of the parameters p and λ as well as the initial data. In
order to repair the image and avoid numerical instability,
we increase the value of the parameter λ and decrease the
time step size dt until finding a suitable value for which
the image will not get damaged. In this case, the PMPL
scheme becomes stable for dt = 10−3 and λ = 60.
In Figs. 7 and 8, we will fix λ = 60 and we present the
comparison between our algorithm with dt = 0.1 and
the PMPL method with dt = 10−3 (Fig. 6).
The Figs. 7 and 8 show that the twomethods give similar

results. But in this experiment, our algorithm has restored
the images in fewer time compared to the PMPL method
(Table 2).
In the last test, we keep the same parameters employed

in the previous experiment and change the value of the
threshold λ (Figs. 9 and 10).

Fig. 9 Top row, restored Barbara image by PMPL method; bottom row, restored images by our algorithm; first column, noisy images; two right
columns, recovered with λ = 40.98 and λ = 40.97, respectively
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Fig. 10 Top row, restored Rice image by PMPL method; bottom row, restored images by our algorithm; first column, noisy images; two right
columns, recovered with λ = 29.05 and λ = 29, respectively

In this experiment, the proposed algorithm proves to
be performing better than the explicit scheme where the
restored images are damaged when we took a λ small
and/or p large (Fig. 9). The results of this section confirm
the usefulness of our method that overcomes the condi-
tion of stability; whereas, we remark that for the explicit
scheme, the stability criterion is given by dt ≤ f (p, λ)

where f is a decreasing function with respect to p and a
nondecreasing with respect to λ such that

f (p, λ) −→ 0 as p → ∞ and f (p, λ) −→ 0 as λ → 0.

5 Conclusions
Perona and Malik proposed one of the pioneering model
which represents an efficient and effective tool for image
denoising. However, the numerical simulations produce a
phenomenon known as the staircase effect, which causes
images to look blocky. To overcome this, in [22], we have
proposed a regularized model which is an interpolation of
two classical models, Perona-Malik and p-Laplacian with
p → ∞. We have also demonstrate the efficiency and
effectiveness of this model compared with the method
most frequently used (see [22] for more detail). However,
a major drawback for the numerical scheme is that the sta-
bility condition is strongly dependent to the parameters
p, λ, and dt. For that, in this work, we develop a novel algo-
rithm based on fractional step methods. Combining the
classical additive operator splitting and a nonlinear relax-
ation algorithm, the numerical experiments demonstrate
that the proposed algorithm is accurate and effective for
images restoration. Comparing with the classical explicit
schemes presented in [22] which strongly depends on
the regularization methods and the model parameters,

our algorithm controls the problem of stability and is
significantly faster.
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