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Abstract

Stereo matching of two distanced cameras and structured-light RGB-D cameras are the two common ways to
capture the depth map, which conveys the per-pixel depth information of the image. However, the results with
mismatched and occluded pixels would not provide accurately well-matched depth and image information. The
mismatched depth-image relations would degrade the performances of view syntheses seriously in modern-day
three-dimension video applications. Therefore, how to effectively utilize the image and depth to enhance
themselves becomes more and more important. In this paper, we propose an advanced multilateral filter (AMF),
which refers spatial, range, depth, and credibility information to achieve their enhancements. The AMF enhancements
could sharpen the image, suppress noisy depth, filling depth holes, and sharpen the depth edges simultaneously.
Experimental results demonstrate that the proposed method provides a superior performance, especially around the

object boundary.
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1 Introduction

In general, the three-dimensional (3D) video is widely
recognized as a visual media technique which enables
viewers to perceive the depth in a scene without special
glasses. Owing to understanding the 3D video among
users who wish to experiment extended visual sensa-
tions, developments in 3D video technologies have initi-
ated the commercialization of 3D services in consumer
products such as 3D TVs [1], tablet PCs, mobile devices,
and computer gaming devices. At the same time, the
multi-view video plus depth (MVD) format has appeared
as a potent technique for 3D video applications [2, 3].
To produce virtual views at desired viewpoints with low
processing costs, the MVD format uses the depth-
image-based rendering (DIBR) techniques [4—6]. The
DIBR technique synthesizes images at the desired view-
point by using the color image and its corresponding
depth map. Thus, it can be treated as an efficient data
format for the 3D video. Moreover, the depth map is an
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image which represents the range information of the
captured scene. The depth map is important because it
affects the quality of the synthesized images.

The acquisitions of depth information can be catego-
rized into two approaches: the indirect estimation ap-
proach based on stereo matching of two images taken in
different locations and the direct measure approach
based on the time-of-flight of depth sensors. The stereo
matching with visual computation estimates the depth
map from two-view images [7-9]. However, its computa-
tional complexity is high and its estimation accuracy
would be fail in texture-less and occluded regions. Re-
cently, the low-cost structured-light RGB-D cameras
have been used to capture high-resolution color images
and low-resolution depth maps [10]. Thus, depth map
upsampling [11, 12] followed by its enhancement [13]
becomes an inevitable task because the quality of the
DIBR process heavily depends on the accuracy of depth
information. To improve the depth map of RGB-D cam-
eras, the following problems should be solved. First, the
boundary of an object in the depth map would not be
well matched with that of its corresponding color image.
The region near the object boundary is commonly

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-017-0487-7&domain=pdf
http://orcid.org/0000-0001-6502-9961
mailto:jarferryang@gmail.com
http://creativecommons.org/licenses/by/4.0/

Chang et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:51

referred to the mismatched region. Secondly, the holes
with no depth information often happened in the depth
map because the infrared (IR) light can be absorbed or
obstructed by the object. Thirdly, the depth map suffers
from the optical noise because of multiple reflections or
scatters of the IR light.

In general, the images usually have better quality but
could not be well matched with the depth map. Thus, it
is reasonable to assume that the depth maps usually
have much worse quality with noisy, mismatched, and
hole pixels. To overcome these problems, the joint bilat-
eral filters (JBF) proposed [14—16] use color and spatial
similarity between corresponding pixels in the image to
enhance the depth map. Then, the iterative joint multi-
lateral filtering (IJMF) suggested in [17] achieves the best
unsharp masking structure through the training of pa-
rameters. This iterative method not only enhances the
sharpness of the image but also smooths the corre-
sponding video pixel values; however, it requires a com-
plex training process to obtain the parameters. In order
to overcome the drawbacks of the IJMF method, the
adaptive joint trilateral filter (AJTF) method has been
proposed in [18] by using different designed patterns to
test the differences between the image and its corre-
sponding depth map. The depth map is then sharpened
along object boundary borders and suitable for practical
DIBR process [19-21]. However, this method is easy to
be affected by complex image texture, which suffers ser-
ious blocking effect in depth map for high texture
objects.

In summary, the above methods cannot accurately en-
hance the noisy depth maps with unmatched color
image and depth map to result in distortion of the syn-
thesized 3D image. Therefore, in this paper, we propose
an adaptive multilateral filter (AMF) for effective depth
enhancement. The AMF approach considers the similar-
ities of the spatial, range, depth, and credibility informa-
tion can successfully suppress the noise, filling the holes,
and sharpening the object edges simultaneously. The
rest of this paper is present as follows. In Section 2 the
background and motivations are explained. In Section 3,
the proposed advanced multilateral filter is addressed in
details. The comparisons of subjective SSIM and PSNR
performances and the viewing quality are exhibited in
Section 4. Finally, conclusions of this paper are exhibited
in Section 5.

2 Background and motivations

Generally, the source depth map could be generated by
fast stereo matching technique with subsample stereo
images or captured by RGB-D cameras with a lower
resolution than the color image. Thus, the source depth
map produced by fast stereo matching and depth camera
usually has a lower resolution than the corresponding
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color image and contains a lot of noisy pixels including
unknown pixels due to occlusions. Thus, the source
depth map will be first up sampled before depth en-
hancement. In the paper, the traditional bicubic
interpolation [22] is applied to recover the resolution of
the source depth map to that of the corresponding color
image. After upsampling depth map, we assume that the
original texture and corresponding depth map, which
are respectively expressed by g(x, ¥) and d(x, y), are with
the same spatial resolution and come with some un-
desired noisy pixels in depth maps and images. Specially,
the foreground boundaries do not well match the corre-
sponding color image and jagged boundaries are pro-
duced from the interpolated depth map after the bicubic
interpolation. If the depth is estimated by stereo match-
ing algorithms, there exist mismatched and occluded
pixels due to singularity properties. On the other hand,
we cannot generate virtual image precisely by depth
image-based rendering (DIBR), if the image and its cor-
responding depth map cannot be matched successfully
due to the noises and holes existed in depth maps.
Hence, the enhancements of the image and its depth be-
come very important in 3D visualization.

Thus, the upsampled depth map d(x, y) would be af-
fected by three major factors with noisy, blurring, and
missing pixels [23], where the noise pixels are caused by
the distortion of capture devices resulting in unmatched
depth, the blurring pixels are produced by interpolation
filters mostly along object boundaries, and the missing
pixels are mainly originated from the presence of object
occlusions and concave objects. Thus, the quality im-
provement of the upsampled depth map d(x, y) becomes
an important task in 3D visualization applications. In
[23], the traditionally enhanced processing generally
contains two stages including the suppressing noise and
the image-depth enhancement. However, these stages
take a high computational complexity and large compu-
tational time.

Therefore, a robust filter for solving both the existed
holes and flatness problems is needed to improve the
performance and reduce the computational complexity
as the same time. In this paper, we propose a new
algorithm which is called advanced multilateral filter
(AMEF) to jointly fill the holes and enhance the sharpness
of the upsampled depth map d(x, y) and sharpen the
image g(x, y) at the same time. Besides, the parameters
of the AMF can be determined according to the accur-
acy of the depth map and image. The proposed AMF
does not require the complicated parameter training,
and it is applicable to the practical DIBR applications,
which require the robustness against any deformation of
images or depth maps. In AMF process, the image and
the corresponding depth map are classified based on the
designed binary molds first. Excluding the hole regions,
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Fig. 1 System block diagram for the advanced multilateral filter

(AMF) and the rotating counsel filter (RCR)

the image and the corresponding depth map are
smoothed to reduce the noisy and blurring pixels first.
Then, the smooth enhancement can degrade the high-
frequency noise. Then, the holes are crammed by sur-
rounding neighbors. Finally, after AME, the rolling guid-
ance refinement (RCR) method is used to sharpen the
object edges.

3 Proposed AMF algorithm
3.1 Advanced multilateral filter
As shown in Fig. 1, the proposed depth enhancement
system is composed of two major steps, the advanced
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Fig. 2 Binary molds for image and depth block classification
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multilateral filter (AMF) and the rotating counsel filter
(RCR). We assume that g(x, y) and d(x, y) with the same
spatial resolution represent the original image and the
corresponding depth map, respectively. The depth map,
which could be captured and upsampled from a stereo
camera or estimated by a stereo matching method, often
comes with noise and holes. The proposed AMF en-
hanced results g'(x, y) and 4’ (x, y) are respectively given
as

g(x7y) = Zh(x% l’])g(lv]) (1)

ijeQ

and

d (x,9) = Y _hix,y;i,))d(i,)) (2)

ijeQ

(e)

(463 % 370), e RGBD_1 (640 x 480), and f RGBD_2 (640 x 480)

Fig. 4 Four test images (left) and their corresponding depth maps (right): a Arts (432 x 381), b Books (463 x 370), ¢ Doily (417 x 370), d Moebius
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where the response k(x, y; i, j) at the position (x, y) with
respect to the impulse at (i, j), is defined by,

]s]d]g]c . .o
——— if (i,j)eQ

1y 3)
0, otherwise.

h(x,y;i,)) =

In (3), h(x, y; i, j) is the adaptive multilateral filter,
which is used to enhance the noisy depth map, Q is a se-
lected filtering window, (x, y) is the coordinate of the
center position of the window, and (i, j) are the neighbor
positions of (x, y). J;, J4 Jg» and J, are referred to spatial,
depth, range, and credibility filtering coefficients, which
are respectively defined as

I~ exp <M> @

205

1= exp ( (d(i.)~d(x.y)) ) )

20,4%
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Jo = exp ((gwmy») ©

20,2
c(i,j) x d(i,f))
— (7)

20,2

J.=1-exp <—

where J; is the weight of the depth distance between
center position and its corresponding neighbor position,
Ju is the weight of the depth difference between center
position and its corresponding neighbor position, J, is
the weight of the texture difference between center pos-
ition and its corresponding neighbor position, J, is the
weight of the enhancement of the depth map, which is
near the texture image edge. In (3), the normalization
factor is given as

Ty = Dy e (8)

In (7), the credibility map, c(x,y) is computed from
texture image as

L, G(x,9)2¢

0, Glxy) < ®)

cts.9) = {
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(@ (b)

Fig. 6 Different levels of edge detection: a , =180, b , =220, ¢ , =240, and d ,, =340

(c) (d

where ¢ is a selected threshold and G(x,y) is the magni-
tude of gradient of texture image as

G(x.9) = /G2 (x.9) + G, (x,3). (10)

In (10), the horizontal and vertical direction gradients,
G,(x, y) and G,(x, y) are computed from Sobel operators
[24]. According to (9), the credibility map can be
determined if the pixel is in smooth or edge region. If
the corresponding candidate of d(j, /) is in edge regions,
¢(i,j) = 1. The corresponding candidate depth, d(i,) will
be strengthened with the weight controlled by (7). The
AMEF will be given a strong weight by /. to enhance
d(x,y). On the other hand, if the corresponding can-
didate of d(i,j) is in smoothing regions, c(i,j) =0 such
that the corresponding candidate depth, d(i,j) is
weakened with the weight controlled by (7).

To reduce computation in exponential functions,
Taylor expansion formula is used to approximate the ex-
ponential function as

2

” w
ep(w)=14+w+—.

d (11)

With (3) and (11), the approximated AMF impulse re-
sponse then becomes

. o p(WS)P(Wd)P(Wg)p(l_WC)
h (xvy; la/) = qu
0 , otherwise
(12)

,if(i,/)eQ

where the spatial, depth, range, and credibility filtering
coefficients respectively become

(x=0)*-(-j)°

A (13)
Wq = —w (14)
vy = 812 -
20,
_cli)) x d(i,j)
MeT T T 002 (16)
and
Gy = Zi,jeop (wo)p(wa)p(we)p(we). (17)

It is noted that we need to determine four standard
deviations, o, 04 Og and o, to achieve the best enhance-
ment of depth map, where the mold matching technique
is used for the selection of AMF parameters.

3.2 Mold matching for image and depth map

The mold is used to match image and corresponding
depth map. In this paper, as shown in Fig. 2, there are
56 binary molds, M,,, for m=1, 2, ..., 56 for mold classi-
fication of image and depth blocks. The designed 11 x 11
molds could cover all possible edges and corners of the
blocks of image and depth map.

Table 1 PSNR comparisons with different approaches on Middlebury dataset and RGBD dataset

Methods\image data Art Books Doily Moebius RGBD_1 RGBD_2
JBF [16] with CHF 324373 333130 34.6370 33,5519 26.3400 31.1924
IGDS [39] with CHF 37.9567 41.2789 43.3450 414567 303135 32.8103
CSDU [40] with CHF 37.6181 40.6110 41.3045 42.0501 30.3520 33.6959
AJTF [18] with CHF 324128 29.2324 29.5552 29.3657 276347 314258
Proposed method 39.0004 413019 41.7411 425622 31.6245 33.7466
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Table 2 PSNR comparisons with sensitive of parameters on o 0)2 12
Middlebury and RGBD dataset n = ZmeRﬂ (8(wm)=17,)” + ZmeRi (g(@n)=1,,)
Image data  0,=2, k=15, 0,=2, k; =10, (19)
k2:]5,k3:]8 k2:10,/<3:12
Virtual depth maps ~ Art 39.0004 388735 and
Moebius 425622 41,6602
k ZmGng(xm)
Natural depth maps ~ RGBD_T 31.6245 31.1052 Wy = T’H’ k=0,1. (20)
RGBD_2 33.7466 329218 n

In (18), a, denotes the matching error between the
Let M,, represent the mth mold and I, be the best nth mold and the image block. Thus, the minimum of
a,, represents the best matching mold to the image block
among all the candidate molds. Ng, which is 56, is the
number of total molds, R® and R! respectively represent
the black and white regions in the nth mold as shown in
Fig. 2. With k=0 or 1, 11}‘ is the average of texture values

mold index when a, be the smallest a, for the 11 x 11
block of g. The computation for finding the best match-
ing mold can be expressed as

a, = min{a,}, n=1,2,.., Nk 18) i R, and |RY| denotes the number of elements in Rf. In
(19), we use the least squares error method to predict

where the best mold, M, for the image block. To find the best
s N

@ (©)

o ©

~ Books Doily

(b) () (b)

@ © @

U] (e)

Moebius RGBD_I RGBD_2

Fig. 7 Results of the depth enhancement coupled with hole filling results obtained by a noisy depth map, b joint bilateral filter (JBF) [16],
c intensity guided depth superresolution (IGDS) [39], d compressive sensing based depth upsampling (CSDU) [40], e adaptive joint trilateral filter
(AJTF) [18], and f the proposed AMF for Art, Books, Doily, Moebius, RGBD_1, and RGBD_2
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Fig. 8 Four depth map results obtained by the AMF (left side) and by the AMF and the RGR (right side): a Art, b Books, ¢ Doily, d Moebius,

(a)
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Fig. 9 Two selected regions obtained by the AMF (left side) and by

the AMF coupled with the RGR (right side): a Art and b Doily

. /

mold for the depth block, M;,, we can simply replace
gx,,) with d(x,,) in (19) and (20). In addition, if the
block variance is less than a given threshold, e.g., 1, we
would assume that the corresponding block belongs to
the smooth region. In this case, a new binary mold can
be assigned by consisting of all elements with 1’s or 0%,
denoted by M.

By comparing similarity of the best molds of depth
map and image blocks, the sum of absolute differences
(SAD) is used to calculate the discrepancy, and the local
similarity is measured by the mold matching distortion,

D,,,,, as:
Dy, = MIN(SADM,, My,), SAD(Mi,, My)) o
Dmax
where
SAD(a,b) =" |a(m)-b(m)|. (22)

The SADs between two binary molds represents the
total number of mismatched pixels. The SADs of the

Table 3 PSNR performances achieved by AMF and RCR
methods on Middlebury dataset and RGBD dataset

RGBD_1 RGBD_1
33.2462 34.8825

Image data  Art Books Moebius

PSNR 406890 40.8794 436993 41.0097

Doily
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Table 4 RMSE performances achieved by different depth enhancement methods on Middlebury dataset and RGBD dataset

Downsampled JBF [16] with CHF IGDS [39] with CHF CSDU [40] with CHF AJTF [18] with CHF AMF AMF with RCR
2X 2.89 1.56 1.72 242 1.15 1.08
4x 3.13 1.88 205 2.74 1.54 141
8x 4.26 267 322 351 273 3.06

mold and its binary inversion of the depth map compar-
ing to the image mold, which are denoted {M,,,M;, }
and {M 1M, }, are respectively computed. Then, the
minimum SAD is used to represent the mold similarity.
It is worth noting that SAD(Mj,,M,,) is necessary be-
cause the binary mold only classifies the block pixels
into two different groups. If we reverse bits in all molds,
the mold matching processes defined in (18), (19), and
(20) will achieve the same results. It means texture
image and depth map corresponding to each binary
mold with all the black region and white region swap,
the similarity between the two molds will not be chan-
ged. Since the smallest SAD will be generated by D,y
Dpax denotes the largest SAD between any two molds,
the mold similarity after normalization of Dy, the
value of D,,, is between 0 and 1. In Fig. 2, by comparing
them one-by-one, we found that the maximum SAD is
Dynax = 83. The value of Dy, is defined as the largest
difference between the image mold and the depth mold.

According to matching of depth map and image, we
can use 0y, 04 and o, to adjust the influence of the range,
depth and credibility filters. Thus, three standard devia-
tions according to D,,, are given as:

0g = max(og,, min(og s, k1-Dpm)) (23)

04 = max(og, min(ogy, k-Dym)) (24)
and

0. = max(ocz, min(ocy,k3-Dym)) (25)

where 0,,(04.,0.;) and 04:/(04.:5 0c,;) denote the lower
and upper limits, respectively. Thus, for the AMF, we
can linearly increase or decrease ki, k» and k3 to adjust
the strong or weak influence of D,,,,.

3.3 Rotating counsel refinement for depth map

After the AMF enhancement, the tiny jagged edges will
produce some errors in the synthesis view of the DIBR
technology, for example, the boundary of the object is
extended to the wrong region. Therefore, the RCR
method [25] is used to adjust the object edge of the
enhanced depth map. Thus, there exist several algo-
rithms can effectively detect edges and eliminate jagged
edges [26], such as guided filter [27, 28], geodesic filters
[29, 30], weighted median filters [31, 32], and bilateral

filter [33-35]. In this paper, we suggest the rotating
counsel refinement (RCR), the filtering, is used to re-
move the tiny jagged edge of enhanced depth maps. The
RCR process is implemented in an iterative manner [36],
where the iterative RCR is composed of two major steps,
including small structure smoothing and edge recovery
as illustrated in Fig. 3. The RCR method uses the
Gaussian filter to smooth the enhanced depth map, the
enhanced depth map is called the guided depth map
after the Gaussian filter, then the guided depth map is
used to iterate the original enhanced depth map and
sharpen the tiny jagged edges.

4 Experimental results

To evaluate the effectiveness of advanced multilateral fil-
ter (AMF) and the rolling guidance refinement (RGR),
the proposed depth enhancement system is experimen-
ted on Middlebury database [37, 38] and RGBD data-
base. Virtual depth maps are generated by the stereo
matching method on the Middlebury database, in
addition, natural depth maps are produced by the stereo
camera on the RGBD database. Figure 4 shows six test
images, Art, Books, Doily, Moebius, RGBD_1, and
RGBD_2 used for evaluating the performance of depth
enhancement and depth refinement.

4.1 Performance evaluation of depth enhancement

In experiments, the weighted factors are empirically set
as k; =15, ky =15, k3 =18 in (23)—-(25) and ¢ is set to
240 in (9). Decreases or increases of the above factors
will result in strong or weak enhancement of the results.
For comparisons of subjective performances, the pro-
posed method without using any hole filling is compared
to the joint bilateral filter (JBF) [16], intensity guided
depth superresolution (IGDS) [39], compressive sensing
based depth upsampling (CSDU) [40], and adaptive joint
trilateral filter (AJTF) [18] methods all coupled with
cross-based hole filling (CHF). After depth enhance-
ment, the enhanced depth maps by the proposed AMF
process as well as JBF and AJRF methods with CHF are

Table 5 Execution time of three main stages in the proposed

method
Stage AMF RCR
Execution time(s) 1785513 64113
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Table 6 Execution time of related methods and proposed method

Page 10 of 12

Methods JBF [16] with CHF IGDS [39] with CHF

CSDU [40] with CHF AJTF [18] with CHF Proposed method

Execution time (s) 86.0164 253.1741

191.5807 1724393 184.9626

shown in Fig. 7. The simulation results show that the
proposed AMF method effectively removes the noise
and hole pixels, but the enhanced depth map still exists
tiny jagged edges. Therefore, the depth refinement along
object edges is another important step.

In Fig. 5a, if the value of the threshold ¢ is too small,
many unnecessary details of the texture will be pro-
duced, if the value of the threshold ¢ is too large, the
strong edge regions of the color image will be excluded;
therefore, the performance of the AMF will be affected
by the threshold ¢. Different levels of edge detection
simulation results are shown in Fig. 6.

Table 1 shows the PSNR performances between the
ground truth and the depth enhancement results ob-
tained by different methods. In Table 1, the maximum
PSNR values achieved by the proposed method are
39.0004, 41.3019, 41.7411, 42.5622, 31.6245, and
33.7466 dB, respectively, while the minimum PSNR
values achieved by AJTF [18] with CHF are 32.4128,
29.2324, 29.5552, 29.3657, 27.6347, and 31.4258 dB, re-
spectively. We learn that the proposed method achieves
the improvements with PSNR 6.5876, 12.0695, 12.1859,
13.1965, 3.9898, and 2.3208 dB. The PSNR subjective
performances show that the proposed method performs
better than the JBF [16] with CHF, IGDS [39] with CHF,
CSDU [40] with CHF, and AJTF [18] with CHF. It is
noted that the proposed method does not need the hole
filling before the enhancement procedures. The best re-
sult for each sample is highlighted through bold face
type. Table 2 shows the PSNR comparisons with sensi-
tivity of parameters on Middlebury and RGBD datasets.
The strong depth enhancement has sharpening edges of

objects, but there will be accompanied by tiny jagged
edges; on the other hand, the weak depth enhancement
has smoothing edges of objects, but the PSNR value is
worse than the strong depth enhancement relatively
(Fig. 7).

4.2 Depth enhancement with RCR process

So as to assess the performance of the AMF for depth
enhancement coupled with rotating counsel refinement,
some parameter values based on experience need to be
determined. In simulations, we also found that the rotat-
ing counsel iterations converge speedily. Unlike trad-
itional refinement methods, the procedure of the RCR
converges to a significant depth map faithful to the input
no matter how many iterations are performed. Figure 8
shows results for testing depth maps. Figure 9 shows the
details of the results which are the magnified portions of
Fig. 8a, ¢, when the AMF and the RGR (AMF_RGR) are
both applied to refine the depth maps. Table 3 shows
the PSNR results when AMF and RGR methods are both
used. The depth maps after RCR process, in the object-
ive of the simulation results, the PSNR values of refined
depth maps are increased, in the subjective simulation
results, the tiny jagged edge problems are also resolved.
Table 4 shows that under the global error measurement,
the proposed method is better than the JBF and AJTF
methods, and more so when increasing the resolution of
depth maps.

Table 5 exhibits the execution time of AMF and RCR
stages suggested in the proposed depth enhancement
system. Table 6 shows the total execution time required
by different methods. The proposed method is much

«® IBF with CHF =#= IGDS with CHF
AJTF with CHF «=#= AMF

CSDU with CHF
=& AMF with RCR

Histogram (%)

7 8 9 10

(a)

Fig. 10 Results of the enhanced depth map quality metric: a horizontal disparity and b vertical disparity

w@ JBF with CHF &= IGDS with CHF
AJTF with CHF === AMF

CSDU with CHF
w®- AMF with RCR

Histogram (%)

10 9 -8 7 6 -5 4 3 2 1 0 1 2 3 4 5 6 7
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Table 7 SSIM and PSNR performance achieved by different depth enhancement methods on Middlebury dataset and RGBD dataset

Methods Art Books Doily Moebius RGBD_1 RGBD 2
SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

JBF [16] + CHF 09880 360083 09754 338966 09913 446455 09912 397306 09561 298534 09686  33.6112
IGDS [39] + CHF 0.9911 374257 0.9913 372058  0.9951 47.7032  0.9887 38.1115 09610 299120 09677 33.5204
CSDU [40] + CHF 09895 372223 09902  37.1560 09947 478200 09881 370544 09612 304155 09691  33.8235
AJTF [18] + CHF 0.9865 351333 09744 341137 09967 478452 09876 364653 0.9582 302524 09674 332741
AMF 0.9945 389374 09940 404719 09962 477070 09956 405725 0.9633 311112 09741 34,6881
AMF + RCR 09946 389546 09935 373574 09976 496378 09979 422108 09664 312685 09756  34.7168

more effective than the JBF and AJTF, but the calcula-
tion time is only 3.59% longer than the AJTE. So, it is
worthwhile from the cost-effective ratio of viewpoint,
where the experiments are carried on an Intel Core i7-
4770 CPU computer with a 12-GB RAM and tested on
the Matlab platform (Version R2013a).

The histograms of horizontal depth value and vertical
depth value are shown in Fig. 10. In order to obtain an
objective evaluation of the enhanced depth map quality,
the enhanced depth map quality metric suggested in
[41] is used for comparisons. In Fig. 10a, the enhanced
depth map of the proposed method has smaller depth
values in the left half of histogram, representing less vis-
ual fatigue; in Fig. 10b, the enhanced depth map of the
proposed method focusses on the central region of the
histogram which means less visual fatigue.

4.3 Performance evaluation with Middlebury datasets

In order to understand the quality of the enhanced
depth map, the depth image-based rendering proposed
in [21] is used to produce the synthesized views from
the depth maps obtained by different depth enhance-
ment methods. For objective evaluations, the SSIM and
PSNR performances are shown in Table 7. The best re-
sult for each sample is highlighted through bold face
type. The proposed approach gives better the SSIM and
PSNR results than JBF [16] and AJTF [18].

5 Conclusions

The image and depth enhancements play an important
role in nowadays 3D video technologies. Many ap-
proaches are proposed to deal with different situations.
We present a new robust adaptive method based on the
adaptive joint trilateral filter (AJTF) to enhance the
image and noisy depth maps. In this paper, we propose
an advanced multilateral filter (AMF), which considers
the similarities of the spatial, range, depth, and credibil-
ity information. The AMF is used for the depth en-
hancement by suppressing the noise, filling the holes
and sharpening the object edges simultaneously. Finally,
the proposed method performs the better results than
the other method in the experiments.

The proposed AMF without hole filling outperforms
the AJTF and the JBF with CHF. The proposed AMF
produces sharper object edges and removes overshoot
and undershoot artifacts. Besides, the proposed AMF
method can remove hole regions and sharpen edges sim-
ultaneously. The proposed method replaces the expo-
nential function with the second order Taylor expansion
function, which can save 12.69% of the computing time
on MATLAB platform. We compare the proposed AMF
method with different depth enhancement algorithms;
the AMF exhibits better performance in subjective and
objective identification.

As a future work, the research direction of the AMF
with the hardware VLSI circuits should be considered.
In conjunction with DIBR techniques, the edge detection
should be more accurate in small object edges such that
the DIBR technique requires extremely accurate depth
maps. Finally, the proposed method can be extended to
depth video enhancement by employing the temporal
depth information between successive frames.
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