Skip to main content

Fast Burst Synchronization for Power Line Communication Systems


Fast burst synchronization is an important requirement in asynchronous communication networks, where devices transmit short data packets in an unscheduled fashion. Such a synchronization is typically achieved by means of a preamble sent in front of the data packet. In this paper, we study fast burst synchronization for power line communication (PLC) systems operating below 500 kHz and transmitting data rates of up to about 500 kbps as it is typical in various PLC network applications. In particular, we are concerned with the receiver processing of the preamble signal and the actual design of preambles suitable for fast burst synchronization in such PLC systems. Our approach is comprehensive in that it takes into account the most distinctive characteristics of the power line channel, which are multipath propagation, highly varying path loss, and disturbance by impulse noise, as well as important practical constraints, especially the need for spectral shaping of the preamble signal and fast adjustment of the automatic gain control (AGC). In fact, we regard the explicit incorporation of these various requirements into the preamble design as the main contribution of this work. We devise an optimization criterion and a stochastic algorithm to search for suitable preamble sequences. A comprehensive performance comparison of a designed and two conventional preambles shows that the designed sequence is superior in terms of (a) fast burst synchronization in various transmission environments, (b) fast AGC adjustment, and (c) compliance of its spectrum with the spectral mask applied to the data transmit signal.


  1. 1.

    Massey J: Optimum frame synchronization. IEEE Transactions on Communications 1972,20(2):115-119. 10.1109/TCOM.1972.1091127

    Article  Google Scholar 

  2. 2.

    Scholtz R: Frame synchronization techniques. IEEE Transactions on Communications 1980,28(8, part 2):1204-1213. 10.1109/TCOM.1980.1094813

    Article  Google Scholar 

  3. 3.

    Fechtel SA, Meyr H: Fast frame synchronization, frequency offset estimation and channel acquisition for spontaneous transmission over unknown frequency-selective radio channels. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '93), September 1993, Yokohama, Japan 229–233.

    Google Scholar 

  4. 4.

    IEEE 802.11a : Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band. 1999.

  5. 5.

    IEEE 802.15.3 : Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless PANs. 2003.

  6. 6.

    Lee MK, Newman RE, Latchman HA, Katar S, Yonge L: HomePlug 1.0 powerline communication LANs—protocol description and performance results. International Journal of Communication Systems 2003,16(5):447-473. 10.1002/dac.601

    Article  Google Scholar 

  7. 7.

    Müller-Weinfurtner S: OFDM for Wireless Communications: Nyquist Windowing, Peak-Power Reduction, and Synchronization. Shaker, Aachen, Germany; 2000.

    Google Scholar 

  8. 8.

    Pavlidou N, Han Vinck AJ, Yazdani J, Honary B: Power line communications: state of the art and future trends. IEEE Communications Magazine 2003,41(4):34-40. 10.1109/MCOM.2003.1193972

    Article  Google Scholar 

  9. 9.

    Bumiller G, Sauter T, Pratl G, Treytl A: Secure and reliable wide-area power-line communication for soft-real-time applications within REMPLI. Proceedings of the 9th International Symposium on Power Line Communications and Its Applications (ISPLC '05), April 2005, Vancouver, British Columbia, Canada 57–60.

    Google Scholar 

  10. 10.

    Shwehdi MH, Khan AZ: A power line data communication interface using spread spectrum technology in home automation. IEEE Transactions on Power Delivery 1996,11(3):1232-1237. 10.1109/61.517476

    Article  Google Scholar 

  11. 11.

    van Rensburg P, Ferreira H: Automotive power-line communications: favourable topology for future automotive electronic trends. Proceedings of the 7th International Symposium on Power-Line Communications and Its Applications (ISPLC '03), March 2003, Kyoto, Japan 103–108.

    Google Scholar 

  12. 12.

    Zimmermann M, Dostert K: A multipath model for the powerline channel. IEEE Transactions on Communications 2002,50(4):553-559. 10.1109/26.996069

    Article  Google Scholar 

  13. 13.

    Eriksson M: Dynamic single frequency networks. IEEE Journal on Selected Areas in Communications 2001,19(10):1905-1914. 10.1109/49.957306

    Article  Google Scholar 

  14. 14.

    Bumiller G: Single frequency network technology for medium access and network management. Proceedings of the 6th International Symposium on Power-Line Communications and Its Applications (ISPLC '02), March 2002, Athens, Greece

    Google Scholar 

  15. 15.

    Corripio FJC, Arrabal JAC, Del Río LD, Muñoz JTE: Analysis of the cyclic short-term variation of indoor power line channels. IEEE Journal on Selected Areas in Communications 2006,24(7):1327-1338.

    Article  Google Scholar 

  16. 16.

    Barmada S, Musolino A, Raugi M: Innovative model for time-varying power line communication channel response evaluation. IEEE Journal on Selected Areas in Communications 2006,24(7):1317-1325.

    Article  Google Scholar 

  17. 17.

    Zimmermann M, Dostert K: Analysis and modeling of impulsive noise in broad-band powerline communications. IEEE Transactions on Electromagnetic Compatibility 2002,44(1):249-258. 10.1109/15.990732

    Article  Google Scholar 

  18. 18.

    Golomb S, Scholtz R: Generalized Barker sequences. IEEE Transactions on Information Theory 1965,11(4):533-537. 10.1109/TIT.1965.1053828

    MathSciNet  Article  Google Scholar 

  19. 19.

    Friese M: Polyphase Barker sequences up to length 36. IEEE Transactions on Information Theory 1996,42(4):1248-1250. 10.1109/18.508850

    Article  Google Scholar 

  20. 20.

    Milewski A: Periodic sequences with optimal properties for channel estimation and fast start-up equalization. IBM Journal of Research and Development 1983,27(5):426-431.

    Article  Google Scholar 

  21. 21.

    European Committee for Electrotechnical Standardization (CENELEC) : EN 50065-1: Signaling on Low-Voltage Electrical Installations in the Frequency Range 3 kHz-148.5 kHz. 2001.

    Google Scholar 

  22. 22.

    Association of Radio Industries and Businesses (ARIB), "STD-T84: Power Line Communication Equipment (10 kHz-450 kHz)", 2002

  23. 23.

    Federal Communication Commission (FCC) : ET Docket 04-37, FCC 04-245. October 2004

  24. 24.

    Bumiller G, Deinzer M: Narrow band power-line chipset for telecommunication and Internet application. Proceedings of the 5th International Symposium on Power-Line Communications and Its Applications (ISPLC '01), April 2001, Malmö, Sweden 353–358.

    Google Scholar 

  25. 25.

    Khoury JM: On the design of constant settling time AGC circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 1998,45(3):283-294. 10.1109/82.664234

    Article  Google Scholar 

  26. 26.

    Antweiler M, Bömer L: Merit factor of Chu and Frank sequences. Electronics Letters 1990,26(25):2068-2070. 10.1049/el:19901334

    Article  Google Scholar 

  27. 27.

    Jeon W-G, You Y-H, Kim J-T, et al.: Timing synchronization for IEEE 802.15.3 WPAN applications. IEEE Communications Letters 2005,9(3):255-257. 10.1109/LCOMM.2005.03013

    Article  Google Scholar 

  28. 28.

    Kocabaş SE, Atalar A: Binary sequences with low aperiodic autocorrelation for synchronization purposes. IEEE Communications Letters 2003,7(1):36-38. 10.1109/LCOMM.2002.807438

    Article  Google Scholar 

  29. 29.

    Warner WD, Leung C: OFDM/FM frame synchronization for mobile radio data communication. IEEE Transactions on Vehicular Technology 1993,42(3):302-313. 10.1109/25.231882

    Article  Google Scholar 

  30. 30.

    Üreten O, Tascioglu S, Serinken N, Yilmaz M: Search for OFDM synchronization waveforms with good aperiodic autocorrelations. Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (CCECE '04), May 2004, Niagara Falls, Canada 1: 13–18.

    Google Scholar 

  31. 31.

    van Trees HL: Detection, Estimation, and Modulation Theory—Part I. John Wiley & Sons, New York, NY, USA; 2001.

    MATH  Google Scholar 

  32. 32.

    Bumiller G: Verification of single frequency network transmission with laboratory measurements. Proceedings of IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '06), March 2006, Orlando, Fla, USA 27–32.

    Google Scholar 

  33. 33.

    Benedetto JJ, Ryan JF: Software Package for CAZAC Code Generators and Doppler Shift Analysis. 2004.

    Google Scholar 

  34. 34.

    Popovic BM: Generalized chirp-like polyphase sequences with optimum correlation properties. IEEE Transactions on Information Theory 1992,38(4):1406-1409. 10.1109/18.144727

    MathSciNet  Article  Google Scholar 

  35. 35.

    Barrett M: Error probability for optimal and suboptimal quadratic receivers in rapid Rayleigh fading channels. IEEE Journal on Selected Areas in Communications 1987,5(2):302-304. 10.1109/JSAC.1987.1146519

    Article  Google Scholar 

  36. 36.

    Brehler M, Varanasi MK: Asymptotic error probability analysis of quadratic receivers in Rayleigh-fading channels with applications to a unified analysis of coherent and noncoherent space-time receivers. IEEE Transactions on Information Theory 2001,47(6):2383-2399. 10.1109/18.945253

    MathSciNet  Article  Google Scholar 

  37. 37.

    Schwartz M, Bennett W, Stein S: Communication Systems and Techniques. McGraw-Hill, New York, NY, USA; 1966.

    MATH  Google Scholar 

  38. 38.

    Biglieri E, Caire G, Taricco G, Ventura-Traveset J: Computing error probabilities over fading channels: a unified approach. European Transactions on Telecommunications 1998,9(1):15-25. 10.1002/ett.4460090103

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gerd Bumiller.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Bumiller, G., Lampe, L. Fast Burst Synchronization for Power Line Communication Systems. EURASIP J. Adv. Signal Process. 2007, 012145 (2007).

Download citation


  • Data Packet
  • Impulse Noise
  • Automatic Gain Control
  • Transmit Data Rate
  • Asynchronous Communication