- Research Article
- Open access
- Published:
Blind Identification of FIR Channels in the Presence of Unknown Noise
EURASIP Journal on Advances in Signal Processing volume 2007, Article number: 012172 (2007)
Abstract
Blind channel identification techniques based on second-order statistics (SOS) of the received data have been a topic of active research in recent years. Among the most popular is the subspace method (SS) proposed by Moulines et al. (1995). It has good performance when the channel output is corrupted by white noise. However, when the channel noise is correlated and unknown as is often encountered in practice, the performance of the SS method degrades severely. In this paper, we address the problem of estimating FIR channels in the presence of arbitrarily correlated noise whose covariance matrix is unknown. We propose several algorithms according to the different available system resources: (1) when only one receiving antenna is available, by upsampling the output, we develop the maximum a posteriori (MAP) algorithm for which a simple criterion is obtained and an efficient implementation algorithm is developed; (2) when two receiving antennae are available, by upsampling both the outputs and utilizing canonical correlation decomposition (CCD) to obtain the subspaces, we present two algorithms (CCD-SS and CCD-ML) to blindly estimate the channels. Our algorithms perform well in unknown noise environment and outperform existing methods proposed for similar scenarios.
References
Proakis J: Digital Communications. 4th edition. McGraw-Hill, New York, NY, USA; 2001.
Stoica P, Besson O: Training sequence design for frequency offset and frequency-selective channel estimation. IEEE Transactions on Communications 2003,51(11):1910-1917. 10.1109/TCOMM.2003.819199
Barhumi I, Leus G, Moonen M: Optimal training design for MIMO OFDM systems in mobile wireless channels. IEEE Transactions on Signal Processing 2003,51(6):1615-1624. 10.1109/TSP.2003.811243
Tong L, Sadler BM, Dong M: Pilot-assisted wireless transmissions: general model, design criteria, and signal processing. IEEE Signal Processing Magazine 2004,21(6):12-25. 10.1109/MSP.2004.1359139
Hassibi B, Hochwald BM: How much training is needed in multiple-antenna wireless links? IEEE Transactions on Information Theory 2003,49(4):951-963. 10.1109/TIT.2003.809594
Tong L, Xu G, Kailath T: Blind identification and equalization based on second-order statistics: a time domain approach. IEEE Transactions on Information Theory 1994,40(2):340-349. 10.1109/18.312157
Moulines E, Duhamel P, Cardoso J-F, Mayrargue S: Subspace methods for the blind identification of multichannel FIR filters. IEEE Transactions on Signal Processing 1995,43(2):516-525. 10.1109/78.348133
Jeremić A, Thomas TA, Nehorai A: OFDM channel estimation in the presence of interference. IEEE Transactions on Signal Processing 2004,52(12):3429-3439. 10.1109/TSP.2004.837440
Frikel M, Utschick W, Nossek J: Blind noise and channel estimation. Proceedings of the 10th IEEE Signal Processing Workshop on Statistical Signal and Array Processing (SSAP '00), August 2000, Pennsylvania, Pa, USA 141–145.
Abed-Meraim K, Hua Y, Loubaton P, Moulines E: Subspace method for blind identification of multichannel FIR systems in noise field with unknown spatial covariance. IEEE Signal Processing Letters 1997,4(5):135-137. 10.1109/97.575557
Dogandžić A, Mo W, Wang Z: Semi-blind SIMO flat-fading channel estimation in unknown spatially correlated noise using the EM algorithm. IEEE Transactions on Signal Processing 2004,52(6):1791-1797. 10.1109/TSP.2004.827200
Dogandžić A, Nehorai A: Space-time fading channel estimation and symbol detection in unknown spatially correlated noise. IEEE Transactions on Signal Processing 2002,50(3):457-474. 10.1109/78.984711
Schwartz WBM, Stein S: A Communication Systems and Techniques. McGraw-Hill, New York, NY, USA; 1966.
Kendall MG, Stuart A: The Advanced Theory of Statistics. Vol. 2. Charles Griffin, London, UK; 1961.
Muirhead RJ: Aspects of Multivariate Statistical Theory. John Wiley & Sons, New York, NY, USA; 1982.
Wax M, Kailath T: Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing 1985,33(2):387-392. 10.1109/TASSP.1985.1164557
Zhang QT, Wong KM: Information theoretic criteria for the determination of the number of signals in spatially correlated noise. IEEE Transactions on Signal Processing 1993,41(4):1652-1663. 10.1109/78.212737
Gazzah H, Regalia PA, Delmas J-P, Abed-Meraim K: A blind multichannel identification algorithm robust to order overestimation. IEEE Transactions on Signal Processing 2002,50(6):1449-1458. 10.1109/TSP.2002.1003068
Yan H: New autocorrelation decomposition method for robust channel estimation with unknown channel order. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC '04), March 2004, Atlanta, Ga, USA 1: 12–17.
Hua Y: Fast maximum likelihood for blind identification of multiple FIR channels. IEEE Transactions on Signal Processing 1996,44(3):661-672. 10.1109/78.489039
Box GEP, Tiao GC: Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading, Mass, USA; 1973.
Jeffreys H: Theory of Probability. 3rd edition. Oxford University Press, London, UK; 1961.
Wong KM, Reilly JP, Wu Q, Qiao S: Estimation of the directions of arrival of signals in unknown correlated noise—I: the MAP approach and its implementation. IEEE Transactions on Signal Processing 1992,40(8):2007-2017. 10.1109/78.150002
Anderson TW: An Introduction to Multivariate Statistical Analysis. 2nd edition. John Wiley & Sons, New York, NY, USA; 1984.
Trees HLV: Detection, Estimation and Modulation Theory. Part I. John Wiley & Sons, New York, NY, USA; 1968.
Basilevsky A: Applied Matrix Algebra in the Statistical Sciences. North-Holland, Amsterdam, The Netherlands; 1983.
Bresler Y, Macovski A: Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing 1986,34(5):1081-1089. 10.1109/TASSP.1986.1164949
Strang G: Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley, Mass, USA; 1993.
Wong KM, Wu Q, Stoica P: Generalized correlation decomposition applied to array processing in unknown noise environments. In Advances in Spectrum Analysis and Array Processing Vol. III. Edited by: Haykin S. Prentice-Hall, Upper Saddle River, NJ, USA; 1995:219-323.
Wu Q, Wong KM: UN-MUSIC and UN-CLE: an application of generalized correlation analysis to the estimation of the direction of arrival of signals in unknown correlated noise. IEEE Transactions on Signal Processing 1994,42(9):2331-2343. 10.1109/78.317855
He X, Wong KM: Channel estimation in unknown noise: application of canonical correlation decomposition in subspaces. Proceedings of the 8th International Symposium on Signal Processing and Its Applications (ISSPA '05), August-September 2005, Sydney, Australia 2: 475–478.
He X: Blind FIR channel estimation in the presence of unknown noise, MASc dissertation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
He, X., Wong, K.M. Blind Identification of FIR Channels in the Presence of Unknown Noise. EURASIP J. Adv. Signal Process. 2007, 012172 (2007). https://doi.org/10.1155/2007/12172
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/12172