Skip to main content

4D Near-Field Source Localization Using Cumulant

Abstract

This paper proposes a new cumulant-based algorithm to jointly estimate four-dimensional (4D) source parameters of multiple near-field narrowband sources. Firstly, this approach proposes a new cross-array, and constructs five high-dimensional Toeplitz matrices using the fourth-order cumulants of some properly chosen sensor outputs; secondly, it forms a parallel factor (PARAFAC) model in the cumulant domain using these matrices, and analyzes the unique low-rank decomposition of this model; thirdly, it jointly estimates the frequency, two-dimensional (2D) directions-of-arrival (DOAs), and range of each near-field source from the matrices via the low-rank three-way array (TWA) decomposition. In comparison with some available methods, the proposed algorithm, which efficiently makes use of the array aperture, can localize sources using sensors. In addition, it requires neither pairing parameters nor multidimensional search. Simulation results are presented to validate the performance of the proposed method.

References

  1. 1.

    Kay SM: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Upper Saddle River, NJ, USA; 1993.

    Google Scholar 

  2. 2.

    Schmidt RO: Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 1986,34(3):276-280. 10.1109/TAP.1986.1143830

    Article  Google Scholar 

  3. 3.

    Roy R, Kailath T: ESPRIT—estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(7):984-995. 10.1109/29.32276

    Article  Google Scholar 

  4. 4.

    Krim H, Viberg M: Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine 1996,13(4):67-94. 10.1109/79.526899

    Article  Google Scholar 

  5. 5.

    Swindlehurst AL, Kailath T: Passive direction-of-arrival and range estimation for near-field sources. Proceedings of the 4th Annual ASSP Workshop on Spectrum Estimation and Modeling, August 1988, Minneapolis, Minn, USA 123–128.

    Google Scholar 

  6. 6.

    Huang Y-D, Barkat M: Near-field multiple source localization by passive sensor array. IEEE Transactions on Antennas and Propagation 1991,39(7):968-975. 10.1109/8.86917

    Article  Google Scholar 

  7. 7.

    Jeffers R, Bell KL, Van Trees HL: Broadband passive range estimation using MUSIC. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '02), May 2002, Orlando, Fla, USA 3: 2921–2924.

    Google Scholar 

  8. 8.

    Weiss AJ, Friedlander B: Range and bearing estimation using polynomial rooting. IEEE Journal of Oceanic Engineering 1993,18(2):130-137. 10.1109/48.219532

    Article  Google Scholar 

  9. 9.

    Starer D, Nehorai A: Passive localization on near-field sources by path following. IEEE Transactions on Signal Processing 1994,42(3):677-680. 10.1109/78.277864

    Article  Google Scholar 

  10. 10.

    Grosicki E, Abed-Meraim K, Hua Y: A weighted linear prediction method for near-field source localization. IEEE Transactions on Signal Processing 2005,53(10, part 1):3651-3660.

    MathSciNet  Article  Google Scholar 

  11. 11.

    Abed-Meraim K, Hua Y, Belouchrani A: Second-order near-field source localization: algorithm and performance analysis. Proceedings of the 30th Asilomar Conference on Signals, Systems, and Computers, November 1996, Pacific Grove, Calif, USA 1: 723–727.

    Google Scholar 

  12. 12.

    Challa RN, Shamsunder S: High-order subspace based algorithms for passive localization of near-field sources. Proceedings of the 29th Asilomar Conference on Signals, Systems, and Computers, October 1995, Pacific Grove, Calif, USA 2: 777–781.

    Google Scholar 

  13. 13.

    Yuen N, Friedlander B: Performance analysis of higher order ESPRIT for localization of near-field sources. IEEE Transactions on Signal Processing 1998,46(3):709-719. 10.1109/78.661337

    Article  Google Scholar 

  14. 14.

    Chen J-F, Zhu X-L, Zhang X-D: A new algorithm for joint range-DOA-frequency estimation of near-field sources. EURASIP Journal on Applied Signal Processing 2004,2004(3):386-392. 10.1155/S1110865704310152

    MATH  Google Scholar 

  15. 15.

    Wu Y, Ma L, Hou C, Zhang G, Li J: Subspace-based method for joint range and DOA estimation of multiple near-field sources. Signal Processing 2006,86(8):2129-2133. 10.1016/j.sigpro.2006.01.015

    Article  Google Scholar 

  16. 16.

    Kabaoglu N, Cirpan HA, Cekli E, Paker S: Maximum likelihood 3-D near-field source localization using the EM algorithm. Proceedings of the 8th IEEE International Symposium on Computers and Communication (ISCC '03), June-July 2003, Kiris-Kemer, Turkey 1: 492–497.

    Google Scholar 

  17. 17.

    Hung H-S, Chang S-H, Wu C-H: 3-D MUSIC with polynomial rooting for near-field source localization. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '96), May 1996, Atlanta, Ga, USA 6: 3065–3068.

    Google Scholar 

  18. 18.

    Abed-Meraim K, Hua Y: 3-D near field source localization using second order statistics. Proceedings of the 31st Asilomar Conference on Signals, Systems, and Computers, November 1997, Pacific Grove, Calif, USA 2: 1307–1311.

    Google Scholar 

  19. 19.

    Cattell RB: "Parallel proportional profiles" and other principles for determining the choice of factors by rotation. Psychometrika 1944,9(4):267-283. 10.1007/BF02288739

    Article  Google Scholar 

  20. 20.

    Carroll JD, Chang J: Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition. Psychometrika 1970,35(3):283-319. 10.1007/BF02310791

    Article  Google Scholar 

  21. 21.

    Harshman RA: Foundations of the PARAFAC procedure: models and conditions for an "explanatory" multi-modal factor analysis. UCLA Working Papers in Phonetics 1970, 16: 1–84.

    Google Scholar 

  22. 22.

    Smilde A, Bro R, Geladi P: Multi-Way Analysis with Applications in the Chemical Sciences. John Wiley & Sons, Chichester, UK; 2004.

    Google Scholar 

  23. 23.

    Kruskal JB: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and Its Applications 1977,18(2):95-138. 10.1016/0024-3795(77)90069-6

    MathSciNet  Article  Google Scholar 

  24. 24.

    Kruskal JB: Rank decomposition, and uniqueness for 3-way and n-way arrays. In Multiway Data Analysis. Edited by: Coppi R, Bolasco S. North-Holland, Amsterdam, The Netherlands; 1988:7-18.

    Google Scholar 

  25. 25.

    Jiang T, Sidiropoulos ND: Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints. IEEE Transactions on Signal Processing 2004,52(9):2625-2636. 10.1109/TSP.2004.832022

    MathSciNet  Article  Google Scholar 

  26. 26.

    Sidiropoulos ND, Giannakis GB, Bro R: Blind PARAFAC receivers for DS-CDMA systems. IEEE Transactions on Signal Processing 2000,48(3):810-823. 10.1109/78.824675

    Article  Google Scholar 

  27. 27.

    Leurgans SE, Ross RT, Abel RB: A decomposition for three-way arrays. SIAM Journal on Matrix Analysis and Applications 1993,14(4):1064-1083. 10.1137/0614071

    MathSciNet  Article  Google Scholar 

  28. 28.

    Sanchez E, Kowalski BR: Tensorial resolution: a direct trilinear decomposition. Journal of Chemometrics 1990,4(1):29-45. 10.1002/cem.1180040105

    Article  Google Scholar 

  29. 29.

    De Lathauwer L: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM Journal on Matrix Analysis and Applications 2006,28(3):642-666. 10.1137/040608830

    MathSciNet  Article  Google Scholar 

  30. 30.

    Sidiropoulos ND, Bro R, Giannakis GB: Parallel factor analysis in sensor array processing. IEEE Transactions on Signal Processing 2000,48(8):2377-2388. 10.1109/78.852018

    Article  Google Scholar 

  31. 31.

    Rong Y, Vorobyov SA, Gershman AB, Sidiropoulos ND: Blind spatial signature estimation via time-varying user power loading and parallel factor analysis. IEEE Transactions on Signal Processing 2005,53(5):1697-1710.

    MathSciNet  Article  Google Scholar 

  32. 32.

    Mendel JM: Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proceedings of the IEEE 1991,79(3):278-305. 10.1109/5.75086

    Article  Google Scholar 

  33. 33.

    Bro R, Sidiropoulos ND, Giannakis GB: A fast least squares algorithm for separating trilinear mixtures. Proceedings of the 1st International Workshop on Independent Component Analysis and Blind Signal Separation, January 1999, Aussois, France 289–294.

    Google Scholar 

  34. 34.

    Sidiropoulos ND: COMFAC: Matlab code for LS fitting of the complex PARAFAC model in 3-D. 1998.https://doi.org/www.telecom.tuc.gr/~nikos

    Google Scholar 

  35. 35.

    Bro R: PARAFAC: tutorial and applications. Chemometrics and Intelligent Laboratory Systems 1997,38(2):149-171. 10.1016/S0169-7439(97)00032-4

    Article  Google Scholar 

  36. 36.

    Bro R, Sidiropoulos ND: Least squares algorithms under unimodality and non-negativity constraints. Journal of Chemometrics 1998,12(4):223-247. 10.1002/(SICI)1099-128X(199807/08)12:4<223::AID-CEM511>3.0.CO;2-2

    Article  Google Scholar 

  37. 37.

    Vorobyov SA, Rong Y, Sidiropoulos ND, Gershman AB: Robust iterative fitting of multilinear models. IEEE Transactions on Signal Processing 2005,53(8):2678-2689.

    MathSciNet  Article  Google Scholar 

  38. 38.

    De Lathauwer L, De Moor B, Vandewalle J: Computation of the canonical decomposition by means of a simultaneous generalized schur decomposition. SIAM Journal on Matrix Analysis and Applications 2004,26(2):295-327. 10.1137/S089547980139786X

    MathSciNet  Article  Google Scholar 

  39. 39.

    Tomasi G: Practical and computational aspects in chemometric data analysis, Ph.D. thesis. Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark; 2006. https://doi.org/www.models.kvl.dk/research/theses/

    Google Scholar 

  40. 40.

    Tucker LR: The extension of factor analysis to three-dimensional matrices. In Contributions to Mathematical Psychology. Edited by: Gulliksen H, Frederiksen N. Holt, Rinehart & Winston, New York, NY, USA; 1964:109-127.

    Google Scholar 

  41. 41.

    Tucker LR: Some mathematical notes on three-mode factor analysis. Psychometrika 1966,31(3):279-311. 10.1007/BF02289464

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junli Liang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Liang, J., Yang, S., Zhang, J. et al. 4D Near-Field Source Localization Using Cumulant. EURASIP J. Adv. Signal Process. 2007, 017820 (2007). https://doi.org/10.1155/2007/17820

Download citation

Keywords

  • Information Technology
  • Quantum Information
  • Source Localization
  • Source Parameter
  • Sensor Output