Skip to main content

Fast Minimization by Iterative Thresholding for Multidimensional NMR Spectroscopy

Abstract

Fast multidimensional NMR is important in chemical shift assignment and for studying structures of large proteins. We present the first method which takes advantage of the sparsity of the wavelet representation of the NMR spectra and reconstructs the spectra from partial random measurements of its free induction decay (FID) by solving the following optimization problem: min subject to, where is a given observation vector, a random sampling operator, denotes the Fourier transform, and an orthogonal 2D wavelet transform. The matrix is a given matrix such that. This problem can be solved by general-purpose solvers; however, these can be prohibitively expensive in large-scale applications. In the settings of interest, the underlying solution is sparse with a few nonzeros. We show here that for large practical systems, a good approximation to the sparsest solution is obtained by iterative thresholding algorithms running much more rapidly than general solvers. We demonstrate the applicability of our approach to fast multidimensional NMR spectroscopy. Our main practical result estimates a four-fold reduction in sampling and experiment time without loss of resolution while maintaining sensitivity for a wide range of existing settings. Our results maintain the quality of the peak list of the reconstructed signal which is the key deliverable used in protein structure determination.

References

  1. 1.

    Kim S, Szyperski T: GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. Journal of the American Chemical Society 2003,125(5):1385-1393. 10.1021/ja028197d

    Article  Google Scholar 

  2. 2.

    Mobli M, Stern AS, Hoch JC: Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. Journal of Magnetic Resonance 2006,182(1):96-105. 10.1016/j.jmr.2006.06.007

    Article  Google Scholar 

  3. 3.

    Rovnyak D, Frueh DP, Sastry M, et al.: Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. Journal of Magnetic Resonance 2004,170(1):15-21. 10.1016/j.jmr.2004.05.016

    Article  Google Scholar 

  4. 4.

    Schmieder P, Stern AS, Wagner G, Hoch JC: Application of nonlinear sampling schemes to COSY-type spectra. Journal of Biomolecular NMR 1993,3(5):569-576.

    Article  Google Scholar 

  5. 5.

    Schmieder P, Stern AS, Wagner G, Hoch JC: Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. Journal of Biomolecular NMR 1994,4(4):483-490. 10.1007/BF00156615

    Article  Google Scholar 

  6. 6.

    Drori I, Cohen-Or D, Yeshurun H: Fragment-based image completion. ACM Transactions on Graphics (TOG) 2003,22(3):303-312. 10.1145/882262.882267

    Article  Google Scholar 

  7. 7.

    Drori I, Lischinski D: Fast multiresolution image operations in the wavelet domain. IEEE Transactions on Visualization and Computer Graphics 2003,9(3):395-411. 10.1109/TVCG.2003.1207446

    Article  Google Scholar 

  8. 8.

    Gilbert AC, Guha S, Indyk P, Muthukrishnan S, Strauss M: Near-optimal sparse Fourier representations via sampling. Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 2002, Montreal, Quebec, Canada 152–161.

    Google Scholar 

  9. 9.

    Donoho DL: Compressed sensing. IEEE Transactions on Information Theory 2006,52(4):1289-1306.

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Candès EJ, Romberg J, Tao T: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 2006,52(2):489-509.

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Berlekamp E, McEliece R, van Tilborg H: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 1978,24(3):384-386. 10.1109/TIT.1978.1055873

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Chen SS, Donoho DL, Saunders MA: Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing 1998,20(1):33-61. 10.1137/S1064827596304010

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Donoho DL:For most large underdetermined systems of equations, the minimal-norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics 2006,59(7):907-934. 10.1002/cpa.20131

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Efron B, Hastie T, Johnstone I, Tibshirani R: Least angle regression. The Annals of Statistics 2004,32(2):407-499. 10.1214/009053604000000067

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Tibshirani R: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society 1996,58(1):267-288.

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Donoho DL, Elad M, Temlyakov VN: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory 2006,52(1):6-18.

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Donoho DL, Huo X: Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory 2001,47(7):2845-2862. 10.1109/18.959265

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Donoho DL, Tsaig Y:Fast solution of-norm minimization problems when the solution may be sparse. In Tech. Rep. 2006-18. Department of Statistics, Stanford University, Stanford, Calif, USA; 2006.

    Google Scholar 

  19. 19.

    Saunders MA, Kim B: PDCO: primal-dual interior method for convex objectives. https://doi.org/www.stanford.edu/group/SOL/software/pdco.html

  20. 20.

    Ye Y: Interior Point Algorithms: Theory and Analysis. John Wiley & Sons, New York, NY, USA; 1997.

    Google Scholar 

  21. 21.

    Lustig M, Donoho D, Pauly JM: Rapid MR imaging with compressed sensing and randomly under-sampled 3DFT trajectories. Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM '06), May 2006, Seattle, Wash, USA

    Google Scholar 

  22. 22.

    Lustig M, Santos JM, Donoho DL, Pauly JM: Rapid MR angiography with randomly under-sampled 3DFT trajectories and non-linear reconstruction. Proceedings of the 9th Annual Scientific Sessions of the Society for Cardiovascular Magnetic Resonance (SCMR '06), January 2006, Miami, Fla, USA

    Google Scholar 

  23. 23.

    Lustig M, Santos JM, Lee J-H, Donoho DL, Pauly JM: Compressed sensing for rapid MR imaging. Proceedings of the Signal Processing with Adaptative Sparse Structured Representations (SPARS '05), November 2005, Rennes, France

    Google Scholar 

  24. 24.

    Donoho DL, Logan BF: Signal recovery and the large sieve. SIAM Journal on Applied Mathematics 1992,52(2):577-591. 10.1137/0152031

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Candès EJ, Tao T: Decoding by linear programming. IEEE Transactions on Information Theory 2005,51(12):4203-4215. 10.1109/TIT.2005.858979

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Rudelson M, Vershynin R: Geometric approach to error-correcting codes and reconstruction of signals. International Mathematics Research Notices 2005, 2005: 4019–4041. 10.1155/IMRN.2005.4019

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Drori I, Stodden VC, Hurowitz EH:Fast minimization for genome-wide analysis of mRNA lengths. Proceedings of the IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS '06), May 2006, College Station, Tex, USA 19–20.

    Google Scholar 

  28. 28.

    Freeman R, Kupče E: New methods for fast multidimensional NMR. Journal of Biomolecular NMR 2003,27(2):101-114. 10.1023/A:1024960302926

    Article  Google Scholar 

  29. 29.

    Malmodin D, Billeter M: High-throughput analysis of protein NMR spectra. Progress in Nuclear Magnetic Resonance Spectroscopy 2005,46(2-3):109-129. 10.1016/j.pnmrs.2005.01.002

    Article  Google Scholar 

  30. 30.

    Hoch JC, Stern AS: NMR Data Processing. John Wiley & Sons, New York, NY, USA; 1996.

    Google Scholar 

  31. 31.

    Hiller S, Fiorito F, Wüthrich K, Wider G: Automated projection spectroscopy (APSY). Proceedings of the National Academy of Sciences of the United States of America 2005,102(31):10876-10881. 10.1073/pnas.0504818102

    Article  Google Scholar 

  32. 32.

    Kupče E, Freeman R: Fast reconstruction of four-dimensional NMR spectra from plane projections. Journal of Biomolecular NMR 2004,28(4):391-395.

    Article  Google Scholar 

  33. 33.

    Orekhov VY, Ibraghimov I, Billeter M: Optimizing resolution in multidimensional NMR by three-way decomposition. Journal of Biomolecular NMR 2003,27(2):165-173. 10.1023/A:1024944720653

    Article  Google Scholar 

  34. 34.

    Donoho DL, Tsaig Y, Drori I, Starck J-L: Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. In Tech. Rep. 2006-02. Department of Statistics, Stanford University, Stanford, Calif, USA; 2006.

    Google Scholar 

  35. 35.

    Sardy S, Bruce AG, Tseng P: Block coordinate relaxation methods for nonparametric wavelet denoising. Journal of Computational and Graphical Statistics 2000,9(2):361-379. 10.2307/1390659

    MathSciNet  Google Scholar 

  36. 36.

    Sardy S, Bruce AG, Tseng P: Robust wavelet denoising. IEEE Transactions on Signal Processing 2001,49(6):1146-1152. 10.1109/78.923297

    Article  Google Scholar 

  37. 37.

    Daubechies I, Defrise M, De Mol C: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics 2004,57(11):1413-1457. 10.1002/cpa.20042

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Elad M: Why simple shrinkage is still relevant for redundant representations? IEEE Transactions on Information Theory 2006,52(12):5559-5569.

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Elad M, Matalon B, Zibulevsky M: Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization. Journal on Applied and Computational Harmonic Analysis 2006.

    Google Scholar 

  40. 40.

    Figueiredo MAT, Nowak RD: An EM algorithm for wavelet-based image restoration. IEEE Transactions on Image Processing 2003,12(8):906-916. 10.1109/TIP.2003.814255

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Figueiredo MAT, Nowak RD: A bound optimization approach to wavelet-based image deconvolution. Proceedings of the IEEE International Conference on Image Processing (ICIP '05), September 2005, Genova, Italy 2: 782–785.

    Google Scholar 

  42. 42.

    Paige CC, Saunders MA: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software (TOMS) 1982,8(1):43-71. 10.1145/355984.355989

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Pati YC, Rezaiifar R, Krishnaprasad PS: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Proceedings of the 27th Asilomar Conference on Signals, Systems & Computers, November 1993, Pacific Grove, Calif, USA 1: 40–44.

    Article  Google Scholar 

  44. 44.

    Tropp JA: Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory 2004,50(10):2231-2242. 10.1109/TIT.2004.834793

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Lee PT, Li J, Chapman MR, et al.: SESAME: an experiment management system for biomolecular NMR. https://doi.org/www.sesame.wisc.edu

  46. 46.

    Daubechies I: Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, Pa, USA; 1994.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iddo Drori.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Drori, I. Fast Minimization by Iterative Thresholding for Multidimensional NMR Spectroscopy. EURASIP J. Adv. Signal Process. 2007, 020248 (2007). https://doi.org/10.1155/2007/20248

Download citation

Keywords

  • Free Induction Decay
  • Peak List
  • Reconstructed Signal
  • Observation Vector
  • Wavelet Representation