Skip to main content

A Novel Distributed Privacy Paradigm for Visual Sensor Networks Based on Sharing Dynamical Systems

Abstract

Visual sensor networks (VSNs) provide surveillance images/video which must be protected from eavesdropping and tampering en route to the base station. In the spirit of sensor networks, we propose a novel paradigm for securing privacy and confidentiality in a distributed manner. Our paradigm is based on the control of dynamical systems, which we show is well suited for VSNs due to its low complexity in terms of processing and communication, while achieving robustness to both unintentional noise and intentional attacks as long as a small subset of nodes are affected. We also present a low complexity algorithm called TANGRAM to demonstrate the feasibility of applying our novel paradigm to VSNs. We present and discuss simulation results of TANGRAM.

References

  1. 1.

    Agathangelou D, Lo BPL, Wang JL, Yang G-Z: Self-configuring video-sensor networks. Proceedings of the 3rd International Conference on Pervasive Computing, May 2005, Munich, Germany 29–32.

    Google Scholar 

  2. 2.

    Ateniese G, Blundo C, De Santis A, Stinson DR: Visual cryptography for general access structures. Information and Computation 1996,129(2):86–106. 10.1006/inco.1996.0076

    MathSciNet  Article  Google Scholar 

  3. 3.

    Basharat A, Catbas N, Shah M: A framework for intelligent sensor network with video camera for structural health monitoring of bridges. Proceedings of 3rd IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM '05), March 2005, Kauai Island, Hawaii, USA 385–389.

    Google Scholar 

  4. 4.

    Berson TA: Failure of the McEliece public-key cryptosystem under message-resend and related-message conditions. In Advances in Cryptology-Proceedings of Crypto '97, Lecture Notes in Computer Science. Volume 1294. Edited by: Kaliski B. Springer, New York, NY, USA; 1997:213–220.

    Google Scholar 

  5. 5.

    Blakley GR: Safeguarding cryptographic keys. Proceedings of the AFIPS 1979 National Computer Conference (NCC '79), June 1979, Arlington, Va, USA 48: 313–317.

    Google Scholar 

  6. 6.

    Czarlinska A, Kundur D: Distributed actuation attacks in wireless sensor networks: implications and countermeasures. Proceedings of 2nd IEEE Workshop on Dependability and Security in Sensor Networks and Systems (DSSNS '06), April 2006, Columbia, Md, USA 3–12.

    Google Scholar 

  7. 7.

    Feng W-C, Code B, Kaiser E, Shea M, Feng W-C, Bavoil L: Panoptes: scalable low-power video sensor networking technologies. Proceedings of the ACM International Multimedia Conference, November 2003, Berkeley, Calif, USA 562–571.

    Google Scholar 

  8. 8.

    Feng W-C, Walpole J, Feng W-C, Pu C: Moving towards massively scalable video-based sensor networks. Proceedings of Workshop on New Visions for Large-Scale Networks: Research and Applications, March 2001, Washington, DC, USA

    Google Scholar 

  9. 9.

    Fidaleo DA, Nguyen H-A, Trivedi M: The networked sensor tapestry (NeST): a privacy enhanced software architecture for interactive analysis of data in video-sensor networks. Proceedings of the ACM 2nd International Workshop on Video Sureveillance and Sensor Networks (VSSN '04), October 2004, New York, NY, USA 46–53.

    Google Scholar 

  10. 10.

    Gerla M, Xu K: Multimedia streaming in large-scale sensor networks with mobile swarms. ACM SIGMOD Record 2003,32(4):72–76. 10.1145/959060.959073

    Article  Google Scholar 

  11. 11.

    Holman R, Stanley J, Őzkan-Haller T: Applying video sensor networks to nearshore environment monitoring. IEEE Pervasive Computing 2003,2(4):14–21. 10.1109/MPRV.2003.1251165

    Article  Google Scholar 

  12. 12.

    Ito R, Kuwakado H, Tanaka H: Image size invariant visual cryptography. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science 1999,E82-A(10):2172–2177.

    Google Scholar 

  13. 13.

    Karp RM: Reducibility among combinatorial problems. In Complexity of Computer Computations. Edited by: Miller RE, Thatcher JW. Plenum Press, New York, NY, USA; 1972:85–104.

    Google Scholar 

  14. 14.

    Kogut G, Blackburn M, Everett HR: Using video sensor networks to command and control unmanned ground vehicles. Proceedings of AUVSI Unmanned Systems in International Security, September 2003, London, UK

    Google Scholar 

  15. 15.

    Kundur D, Luh W: Multimedia sensor networks. In Encyclopedia of Multimedia. Springer, New York, NY, USA; 2006:TBD.

    Google Scholar 

  16. 16.

    Kundur D, Luh W, Okorafor U: Security and rights management for multimedia sensor networks. In Multimedia Security Technologies for Digital Rights Management. Elsevier, New York, NY, USA; 2006.

    Google Scholar 

  17. 17.

    Lin C-C, Tsai W-H: Secret image sharing with capability of share data reduction. Optical Engineering 2003,42(8):2340–2345. 10.1117/1.1588661

    Article  Google Scholar 

  18. 18.

    Liu Z, Peng D, Zheng Y, Liu J: Communication protection in IP-based video surveillance systems. Proceedings of 7th IEEE International Symposium on Multimedia (ISM '05), December 2005, Irvine, Calif, USA 69–78.

    Google Scholar 

  19. 19.

    Luh W, Kundur D: Distributed privacy for visual sensor networks via Markov shares. Proceedings of 2nd IEEE Workshop on Dependability and Security in Sensor Networks and Systems (DSSNS '06), April 2006, Columbia, Md, USA 23–34.

    Google Scholar 

  20. 20.

    Menezes AJ, van Oorschot PC, Vanstone SA: Handbook of Applied Cryptography. 1st edition. CRC Press, Boca Raton, Fla, USA; 1996.

    Google Scholar 

  21. 21.

    Naor M, Shamir A: Visual cryptography. Proceedings of Advances in Cryptology - EUROCRYPT '94, Workshop on the Theory and Application of Cryptographic Techniques, May 1995, Perugia, Italy 1–12.

    Google Scholar 

  22. 22.

    Obraczka K, Manduchi R, Garcia-Luna-Aveces JJ: Managing the information flow in visual sensor networks. Proceedings of 5th International Symposium on Wireless Personal Multimedia Communications (WPMC '02), October 2002, Honolulu, Hawaii, USA 3: 1177–1181.

    Article  Google Scholar 

  23. 23.

    Okorafor UN, Kundur D: Efficient routing protocols for a free space optical sensor network. Proceedings of 2nd IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, November 2005, Washington, DC, USA 251–258.

    Google Scholar 

  24. 24.

    Pan J, Hou YT, Cai L, Shi Y, Shen SX: Locating base-stations for video sensor networks. Proceedings of 58th IEEE Vehicular Technology Conference (VTC '04), October 2003, Orlando, Fla, USA 5: 3000–3004.

    Google Scholar 

  25. 25.

    Postma A: Classes of Byzantine fault-tolerant algorithms for dependable distributed systems, Ph.D. thesis. University of Twente, Enschede, The Netherlands; 1998.

    Google Scholar 

  26. 26.

    Postma A, de Boer W, Helme A, Smit G: Distributed encryption and decryption algorithms. Memoranda Informatica 96-20 December 1996.

    Google Scholar 

  27. 27.

    Qiao L, Nahrstedt K: Comparison of MPEG encryption algorithms. Computers and Graphics 1998,22(4):437–448. 10.1016/S0097-8493(98)00033-8

    Article  Google Scholar 

  28. 28.

    Shamir A: How to share a secret. Communications of the ACM 1979,22(11):612–613. 10.1145/359168.359176

    MathSciNet  Article  Google Scholar 

  29. 29.

    Shi C, Bhargava BK: A fast MPEG video encryption algorithm. Proceedings of the 6th ACM International Conference on Multimedia, September 1998, Bristol, England 81–88.

    Google Scholar 

  30. 30.

    Shi YQ, Sun H: Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and Standards. CRC Press, Boca Raton, Fla, USA; 2003.

    Google Scholar 

  31. 31.

    Stinson DR: Cryptography: Theory and Practice. 1st edition. Chapman & Hall, New York, NY, USA; 1995.

    Google Scholar 

  32. 32.

    Tang L: Methods for encrypting and decrypting MPEG video data efficiently. Proceedings of the 4th ACM International Conference on Multimedia, November 1996, Boston, Mass, USA 219–229.

    Google Scholar 

  33. 33.

    Vidyasagar M: Nonlinear Systems Analysis. 2nd edition. Prentice-Hall, Englewood Cliffs, NJ, USA; 1993.

    Google Scholar 

  34. 34.

    Wickramasuriya J, Datt M, Mehrotra S, Venkatasubramanian N: Privacy protecting data collection in media spaces. Proceedings of the 12th ACM International Conference on Multimedia, October 2004, New York, NY, USA 48–55.

    Google Scholar 

  35. 35.

    Xiong Z, Liveris AD, Cheng S: Distributed source coding for sensor networks. IEEE Signal Processing Magazine 2004,21(5):80–94. 10.1109/MSP.2004.1328091

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to William Luh.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Luh, W., Kundur, D. & Zourntos, T. A Novel Distributed Privacy Paradigm for Visual Sensor Networks Based on Sharing Dynamical Systems. EURASIP J. Adv. Signal Process. 2007, 021646 (2006). https://doi.org/10.1155/2007/21646

Download citation

Keywords

  • Dynamical System
  • Information Technology
  • Sensor Network
  • Quantum Information
  • Small Subset