Skip to content


  • Research Article
  • Open Access

A Novel Distributed Privacy Paradigm for Visual Sensor Networks Based on Sharing Dynamical Systems

EURASIP Journal on Advances in Signal Processing20062007:021646

  • Received: 5 January 2006
  • Accepted: 30 April 2006
  • Published:


Visual sensor networks (VSNs) provide surveillance images/video which must be protected from eavesdropping and tampering en route to the base station. In the spirit of sensor networks, we propose a novel paradigm for securing privacy and confidentiality in a distributed manner. Our paradigm is based on the control of dynamical systems, which we show is well suited for VSNs due to its low complexity in terms of processing and communication, while achieving robustness to both unintentional noise and intentional attacks as long as a small subset of nodes are affected. We also present a low complexity algorithm called TANGRAM to demonstrate the feasibility of applying our novel paradigm to VSNs. We present and discuss simulation results of TANGRAM.


  • Dynamical System
  • Information Technology
  • Sensor Network
  • Quantum Information
  • Small Subset


Authors’ Affiliations

Department of Electrical and Computer Engineering, 214 Zachry Engineering Center, Texas A & M University, College Station, TX 77843-3128, USA


  1. Agathangelou D, Lo BPL, Wang JL, Yang G-Z: Self-configuring video-sensor networks. Proceedings of the 3rd International Conference on Pervasive Computing, May 2005, Munich, Germany 29-32.Google Scholar
  2. Ateniese G, Blundo C, De Santis A, Stinson DR: Visual cryptography for general access structures. Information and Computation 1996,129(2):86-106. 10.1006/inco.1996.0076MathSciNetView ArticleMATHGoogle Scholar
  3. Basharat A, Catbas N, Shah M: A framework for intelligent sensor network with video camera for structural health monitoring of bridges. Proceedings of 3rd IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM '05), March 2005, Kauai Island, Hawaii, USA 385-389.Google Scholar
  4. Berson TA: Failure of the McEliece public-key cryptosystem under message-resend and related-message conditions. In Advances in Cryptology-Proceedings of Crypto '97, Lecture Notes in Computer Science. Volume 1294. Edited by: Kaliski B. Springer, New York, NY, USA; 1997:213-220.View ArticleGoogle Scholar
  5. Blakley GR: Safeguarding cryptographic keys. Proceedings of the AFIPS 1979 National Computer Conference (NCC '79), June 1979, Arlington, Va, USA 48: 313-317.Google Scholar
  6. Czarlinska A, Kundur D: Distributed actuation attacks in wireless sensor networks: implications and countermeasures. Proceedings of 2nd IEEE Workshop on Dependability and Security in Sensor Networks and Systems (DSSNS '06), April 2006, Columbia, Md, USA 3-12.View ArticleGoogle Scholar
  7. Feng W-C, Code B, Kaiser E, Shea M, Feng W-C, Bavoil L: Panoptes: scalable low-power video sensor networking technologies. Proceedings of the ACM International Multimedia Conference, November 2003, Berkeley, Calif, USA 562-571.Google Scholar
  8. Feng W-C, Walpole J, Feng W-C, Pu C: Moving towards massively scalable video-based sensor networks. Proceedings of Workshop on New Visions for Large-Scale Networks: Research and Applications, March 2001, Washington, DC, USAGoogle Scholar
  9. Fidaleo DA, Nguyen H-A, Trivedi M: The networked sensor tapestry (NeST): a privacy enhanced software architecture for interactive analysis of data in video-sensor networks. Proceedings of the ACM 2nd International Workshop on Video Sureveillance and Sensor Networks (VSSN '04), October 2004, New York, NY, USA 46-53.View ArticleGoogle Scholar
  10. Gerla M, Xu K: Multimedia streaming in large-scale sensor networks with mobile swarms. ACM SIGMOD Record 2003,32(4):72-76. 10.1145/959060.959073View ArticleGoogle Scholar
  11. Holman R, Stanley J, Őzkan-Haller T: Applying video sensor networks to nearshore environment monitoring. IEEE Pervasive Computing 2003,2(4):14-21. 10.1109/MPRV.2003.1251165View ArticleGoogle Scholar
  12. Ito R, Kuwakado H, Tanaka H: Image size invariant visual cryptography. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science 1999,E82-A(10):2172-2177.Google Scholar
  13. Karp RM: Reducibility among combinatorial problems. In Complexity of Computer Computations. Edited by: Miller RE, Thatcher JW. Plenum Press, New York, NY, USA; 1972:85-104.View ArticleGoogle Scholar
  14. Kogut G, Blackburn M, Everett HR: Using video sensor networks to command and control unmanned ground vehicles. Proceedings of AUVSI Unmanned Systems in International Security, September 2003, London, UKGoogle Scholar
  15. Kundur D, Luh W: Multimedia sensor networks. In Encyclopedia of Multimedia. Springer, New York, NY, USA; 2006:TBD.Google Scholar
  16. Kundur D, Luh W, Okorafor U: Security and rights management for multimedia sensor networks. In Multimedia Security Technologies for Digital Rights Management. Elsevier, New York, NY, USA; 2006.Google Scholar
  17. Lin C-C, Tsai W-H: Secret image sharing with capability of share data reduction. Optical Engineering 2003,42(8):2340-2345. 10.1117/1.1588661MathSciNetView ArticleGoogle Scholar
  18. Liu Z, Peng D, Zheng Y, Liu J: Communication protection in IP-based video surveillance systems. Proceedings of 7th IEEE International Symposium on Multimedia (ISM '05), December 2005, Irvine, Calif, USA 69-78.Google Scholar
  19. Luh W, Kundur D: Distributed privacy for visual sensor networks via Markov shares. Proceedings of 2nd IEEE Workshop on Dependability and Security in Sensor Networks and Systems (DSSNS '06), April 2006, Columbia, Md, USA 23-34.View ArticleGoogle Scholar
  20. Menezes AJ, van Oorschot PC, Vanstone SA: Handbook of Applied Cryptography. 1st edition. CRC Press, Boca Raton, Fla, USA; 1996.View ArticleMATHGoogle Scholar
  21. Naor M, Shamir A: Visual cryptography. Proceedings of Advances in Cryptology - EUROCRYPT '94, Workshop on the Theory and Application of Cryptographic Techniques, May 1995, Perugia, Italy 1-12.View ArticleGoogle Scholar
  22. Obraczka K, Manduchi R, Garcia-Luna-Aveces JJ: Managing the information flow in visual sensor networks. Proceedings of 5th International Symposium on Wireless Personal Multimedia Communications (WPMC '02), October 2002, Honolulu, Hawaii, USA 3: 1177-1181.View ArticleGoogle Scholar
  23. Okorafor UN, Kundur D: Efficient routing protocols for a free space optical sensor network. Proceedings of 2nd IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, November 2005, Washington, DC, USA 251-258.Google Scholar
  24. Pan J, Hou YT, Cai L, Shi Y, Shen SX: Locating base-stations for video sensor networks. Proceedings of 58th IEEE Vehicular Technology Conference (VTC '04), October 2003, Orlando, Fla, USA 5: 3000-3004.Google Scholar
  25. Postma A: Classes of Byzantine fault-tolerant algorithms for dependable distributed systems, Ph.D. thesis. University of Twente, Enschede, The Netherlands; 1998.Google Scholar
  26. Postma A, de Boer W, Helme A, Smit G: Distributed encryption and decryption algorithms. Memoranda Informatica 96-20 December 1996.Google Scholar
  27. Qiao L, Nahrstedt K: Comparison of MPEG encryption algorithms. Computers and Graphics 1998,22(4):437-448. 10.1016/S0097-8493(98)00033-8View ArticleGoogle Scholar
  28. Shamir A: How to share a secret. Communications of the ACM 1979,22(11):612-613. 10.1145/359168.359176MathSciNetView ArticleMATHGoogle Scholar
  29. Shi C, Bhargava BK: A fast MPEG video encryption algorithm. Proceedings of the 6th ACM International Conference on Multimedia, September 1998, Bristol, England 81-88.Google Scholar
  30. Shi YQ, Sun H: Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and Standards. CRC Press, Boca Raton, Fla, USA; 2003.Google Scholar
  31. Stinson DR: Cryptography: Theory and Practice. 1st edition. Chapman & Hall, New York, NY, USA; 1995.MATHGoogle Scholar
  32. Tang L: Methods for encrypting and decrypting MPEG video data efficiently. Proceedings of the 4th ACM International Conference on Multimedia, November 1996, Boston, Mass, USA 219-229.Google Scholar
  33. Vidyasagar M: Nonlinear Systems Analysis. 2nd edition. Prentice-Hall, Englewood Cliffs, NJ, USA; 1993.MATHGoogle Scholar
  34. Wickramasuriya J, Datt M, Mehrotra S, Venkatasubramanian N: Privacy protecting data collection in media spaces. Proceedings of the 12th ACM International Conference on Multimedia, October 2004, New York, NY, USA 48-55.View ArticleGoogle Scholar
  35. Xiong Z, Liveris AD, Cheng S: Distributed source coding for sensor networks. IEEE Signal Processing Magazine 2004,21(5):80-94. 10.1109/MSP.2004.1328091View ArticleGoogle Scholar


© Luh et al. 2007