Skip to main content

3D Model Search and Retrieval Using the Spherical Trace Transform

Abstract

This paper presents a novel methodology for content-based search and retrieval of 3D objects. After proper positioning of the 3D objects using translation and scaling, a set of functionals is applied to the 3D model producing a new domain of concentric spheres. In this new domain, a new set of functionals is applied, resulting in a descriptor vector which is completely rotation invariant and thus suitable for 3D model matching. Further, weights are assigned to each descriptor, so as to significantly improve the retrieval results. Experiments on two different databases of 3D objects are performed so as to evaluate the proposed method in comparison with those most commonly cited in the literature. The experimental results show that the proposed method is superior in terms of precision versus recall and can be used for 3D model search and retrieval in a highly efficient manner.

References

  1. 1.

    3D Cafe, https://doi.org/www.3Dcafe.com

  2. 2.

    The Protein Data Bank, https://doi.org/www.rcsb.org

  3. 3.

    Kolonias I, Tzovaras D, Malassiotis S, Strintzis MG: Fast content-based search of VRML models based on shape descriptors. IEEE Transactions on Multimedia 2005,7(1):114–126.

    Article  Google Scholar 

  4. 4.

    Ohbuchi R, Otagiri T, Ibato M, Takei T: Shape-similarity search of three-dimensional models using parameterized statistics. Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, October 2002, Beijng, China 265–274.

    Google Scholar 

  5. 5.

    Osada R, Funkhouser T, Chazelle B, Dobkin D: Matching 3D models with shape distributions. Proceedings of the International Conference on Shape Modelling and Applications (SMI '01), May 2001, Genova, Italy 154–166.

    Google Scholar 

  6. 6.

    Osada R, Funkhouser T, Chazelle B, Dobkin D: Shape distributions. ACM Transactions on Graphics 2002,21(4):807–832. 10.1145/571647.571648

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chen D-Y, Tian X-P, Shen Y-T, Ouhyoung M: On visual similarity based 3D model retrieval. Computer Graphics Forum 2003,22(3):223–232. 10.1111/1467-8659.00669

    Article  Google Scholar 

  8. 8.

    Vranić DV, Saupe D: Description of 3D-shape using a complex function on the sphere. Proceedings of the IEEE International Conference on Multimedia and Expo (ICME '02), August 2002, Lausanne, Switzerland 1: 177–180.

    Article  Google Scholar 

  9. 9.

    Vranić DV, Saupe D, Richter J: Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics. Proceedings of the 4th IEEE Workshop on Multimedia Signal Processing (MMSP '01), October 2001, Cannes, France 293–298.

    Google Scholar 

  10. 10.

    Daras P, Zarpalas D, Tzovaras D, Strintzis MG: Generalized radon transform based 3D feature extraction for 3D object retrieval. Proceedings of the 5th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '04), April 2004, Lisboa, Portugal

    Google Scholar 

  11. 11.

    Horn B, Hilden H, Negahdaripour S: Closed-form solution of absolute orientation using orthonormal matrices. Journal of the Optical Society of America 1988,5(7):1127–1135. 10.1364/JOSAA.5.001127

    MathSciNet  Article  Google Scholar 

  12. 12.

    Kazhdan M, Funkhouser T, Rusinkiewicz S: Rotation invariant spherical harmonic representation of 3D shape descriptors. Proceedings of the Eurographics Symposium on Geometry Processing, June 2003, Aachen, Germany 156–164.

    Google Scholar 

  13. 13.

    Hilaga M, Shinagawa Y, Kohmura T, Kunii TL: Topology matching for fully automatic similarity estimation of 3D shapes. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01), August 2001, Los Angeles, Calif, USA 203–212.

    Google Scholar 

  14. 14.

    MPEG Video Group : MPEG-7 visual part of eXperimentation model (version 9.0). Proceedings of the 55th Mpeg Meeting, 2001, Pisa, Italy ISO/MPEG N3914

    Google Scholar 

  15. 15.

    Funkhouser T, Min P, Kazhdan M, et al.: A search engine for 3D models. ACM Transactions on Graphics 2003,22(1):83–105. 10.1145/588272.588279

    Article  Google Scholar 

  16. 16.

    Novotni M, Klein R: 3D Zernike descriptors for content based shape retrieval. Proceedings of the 8th ACM Symposium on Solid Modeling and Applications, June 2003, Seattle, Wash, USA 216–225.

    Google Scholar 

  17. 17.

    Canterakis N: 3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition. Proceedings of the 11th Scandinavian Conference on Image Analysis, June 1999, Kangerlussuaq, Greenland

    Google Scholar 

  18. 18.

    Suzuki MT: A web-based retrieval system for 3D polygonal models. Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, July 2001, Vancouver, Canada 4: 2271–2276.

    Google Scholar 

  19. 19.

    Kadyrov A, Petrou M: The trace transform and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001,23(8):811–828. 10.1109/34.946986

    Article  Google Scholar 

  20. 20.

    Hu M-K: Visual pattern recognition by moment invariants. IEEE Transactions on Information Theory 1962,8(2):179–187. 10.1109/TIT.1962.1057692

    Article  Google Scholar 

  21. 21.

    Gurevich GB: Foundations of the Theory of Algebraic Invariants. Noordhoff, Groningen, The Netherlands; 1964.

    Google Scholar 

  22. 22.

    Padilla-Vivanco A, Martinez-Ramirez A, Granados-Agustin F: Digital image reconstruction by using Zernike moments. Optics in Atmospheric Propagation and Adaptive Systems VI, September 2004, Barcelona, Spain, Proceedings of SPIE 5237: 281–289.

    Article  Google Scholar 

  23. 23.

    Yap P-T, Paramesran R, Ong S-H: Image analysis by Krawtchouk moments. IEEE Transactions on Image Processing 2003,12(11):1367–1377. 10.1109/TIP.2003.818019

    MathSciNet  Article  Google Scholar 

  24. 24.

    Teague MR: Image analysis via the general theory of moments. Journal of the Optical Society of America 1980,70(8):920–930. 10.1364/JOSA.70.000920

    MathSciNet  Article  Google Scholar 

  25. 25.

    Pun C-M, Lee M-C: Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 2003,25(5):590–603. 10.1109/TPAMI.2003.1195993

    Article  Google Scholar 

  26. 26.

    Strang G, Nguyen T: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley, Mass, USA; 1996.

    Google Scholar 

  27. 27.

    Ritchie DW: Parametric protein shale recognition, Ph.D. thesis. University of Aberdeen, Scotland, UK; 1998.

    Google Scholar 

  28. 28.

    Raileanu LE, Stoffel K: Theoretical comparison between the gini index and information gain criteria. Annals of Mathematics and Artificial Intelligence 2004,41(1):77–93.

    MathSciNet  Article  Google Scholar 

  29. 29.

    Shilane P, Min P, Kazhdan M, Funkhouser T: The Princeton Shape Benchmark. Proceedings of the Shape Modeling International (SMI '04), June 2004, Genova, Italy 167–178.

    Google Scholar 

  30. 30.

    Princeton Shape Benchmark, https://doi.org/shape.cs.princeton.edu/search.html

  31. 31.

    Daras P, Zarpalas D, Tzovaras D, Strintzis MG: Shape matching using the 3D radon transform. Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT '04), September 2004, Thessaloniki, Greece 953–960.

    Google Scholar 

  32. 32.

    Vranić DV: An improvement of rotation invariant 3D-shape descriptor based on functions on concentric spheres. Proceedings of the IEEE International Conference on Image Processing (ICIP '03), September 2003, Barcelona, Spain 3: 757–760.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Zarpalas.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Zarpalas, D., Daras, P., Axenopoulos, A. et al. 3D Model Search and Retrieval Using the Spherical Trace Transform. EURASIP J. Adv. Signal Process. 2007, 023912 (2006). https://doi.org/10.1155/2007/23912

Download citation

Keywords

  • Information Technology
  • Quantum Information
  • Efficient Manner
  • Proper Position
  • Model Search