Skip to main content

gpICA: A Novel Nonlinear ICA Algorithm Using Geometric Linearization


A new geometric approach for nonlinear independent component analysis (ICA) is presented in this paper. Nonlinear environment is modeled by the popular post nonlinear (PNL) scheme. To eliminate the nonlinearity in the observed signals, a novel linearizing method named as geometric post nonlinear ICA (gpICA) is introduced. Thereafter, a basic linear ICA is applied on these linearized signals to estimate the unknown sources. The proposed method is motivated by the fact that in a multidimensional space, a nonlinear mixture is represented by a nonlinear surface while a linear mixture is represented by a plane, a special form of the surface. Therefore, by geometrically transforming the surface representing a nonlinear mixture into a plane, the mixture can be linearized. Through simulations on different data sets, superior performance of gpICA algorithm has been shown with respect to other algorithms.


  1. 1.

    Hyvärinen A, Karhunen J, Oja E: Independent Component Analysis. John Wiley & Sons, New York, NY, USA; 2001.

    Google Scholar 

  2. 2.

    Cichocki A, Amari S-I: Adaptive Blind Signal and Image Processing. John Wiley & Sons, New York, NY, USA; 2002.

    Google Scholar 

  3. 3.

    Comon P: Independent component analysis, a new concept? Signal Processing 1994,36(3):287-314. 10.1016/0165-1684(94)90029-9

    Article  Google Scholar 

  4. 4.

    Bell AJ, Sejnowski TJ: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 1995,7(6):1129-1159. 10.1162/neco.1995.7.6.1129

    Article  Google Scholar 

  5. 5.

    Belouchrani A, Abed-Meraim K, Cardoso J-F, Moulines E: A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing 1997,45(2):434-444. 10.1109/78.554307

    Article  Google Scholar 

  6. 6.

    Hyvärinen A: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 1999,10(3):626-634. 10.1109/72.761722

    Article  Google Scholar 

  7. 7.

    Pham D-T, Cardoso J-F: Blind separation of instantaneous mixtures of non stationary sources. IEEE Transactions on Signal Processing 2001,49(9):1837-1848. 10.1109/78.942614

    MathSciNet  Article  Google Scholar 

  8. 8.

    Pajunen P, Hyvärinen A, Karhunen J: Nonlinear blind source separation by self-organizing maps. Proceedings of the International Conference on Neural Information Processing (ICONIP '96), September 1996, Hong Kong 2: 1207–1210.

    Google Scholar 

  9. 9.

    Pajunen P, Karhunen J: A maximum likelihood approach to nonlinear blind source separation. Proceedings of 7th International Conference on Artificial Neural Networks (ICANN '97), October 1997, Lausanne, Switzerland 541–546.

    Google Scholar 

  10. 10.

    Hochreiter S, Schmidhuber J: Feature extraction through LOCOCODE. Neural Computation 1999,11(3):679-714. 10.1162/089976699300016629

    Article  Google Scholar 

  11. 11.

    Hochreiter S, Schmidhuber J: LOCOCODE performs nonlinear ica without knowing the number of sources. Proceedings of the 1st International Workshop on Independent Component Analysis and Signal Separation (ICA '99), January 1999, Aussois, France 149–154.

    Google Scholar 

  12. 12.

    Jutten C, Karhunen J: Advances in nonlinear blind source separation. Proceedings of the 4th International Workshop on Independent Component Analysis and Signal Separation (ICA '03), April 2003, Nara, Japan 245–256.

    Google Scholar 

  13. 13.

    Hyvärinen A, Pajunen P: Nonlinear independent component analysis: existence and uniqueness results. Neural Networks 1999,12(3):429-439. 10.1016/S0893-6080(98)00140-3

    Article  Google Scholar 

  14. 14.

    Taleb A, Jutten C: Source separation in post-nonlinear mixtures. IEEE Transactions on Signal Processing 1999,47(10):2807-2820. 10.1109/78.790661

    Article  Google Scholar 

  15. 15.

    Ziehe A, Kawanabe M, Harmeling S, Müller K-R: Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation. Journal of Machine Learning Research 2003,4(7-8):1319-1338.

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Howard HY, Amari S-I, Cichocki A: Information-theoretic approach to blind separation of sources in non-linear mixture. Signal Processing 1998,64(3):291-300. 10.1016/S0165-1684(97)00196-5

    Article  Google Scholar 

  17. 17.

    Parashiv-Ionescu A, Jutten C, Ionescu A, Chovet A, Rusu A: High performance magnetic field smart sensor arrays with source separation. Proceedings of the 1st International Conference on Modeling and Simulation of Microsystems (MSM '98), April 1998, Santa Clara, Calif, USA 666–671.

    Google Scholar 

  18. 18.

    Prakriya S, Hatzinakos D: Blind identification of LTI-ZMNLLTI nonlinear channel models. IEEE Transactions on Signal Processing 1995,43(12):3007-3013. 10.1109/78.476444

    Article  Google Scholar 

  19. 19.

    Korenberg MJ, Hunter IW: The identification of nonlinear biological systems: LNL cascade models. Biological Cybernetics 1996,55(2-3):125-134.

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Nguyen TV, Patra JC, Das A: A post nonlinear geometric algorithm for independent component analysis. Digital Signal Processing 2005,15(3):276-294. 10.1016/j.dsp.2004.12.006

    Article  Google Scholar 

  21. 21.

    Nguyen TV, Patra JC, Das A, Ng GS: Post nonlinear blind source separation by geometric linearization. Proceedings of the International Joint Conference on Neural Networks (IJCNN '05), July-August 2005, Montreal, Canada 1: 244–249.

    Google Scholar 

  22. 22.

    Eriksson J, Koivunen V: Blind identifiability of class of nonlinear instantaneous ica models. Proceedings of the 11th European Signal Processing Conference (EUSIPCO '02), September 2002, Toulouse, France 2: 7–10.

    Google Scholar 

  23. 23.

    Georgiev P, Chichocki A: Robust independent component analysis via time-delayed cumulant functions. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 2003,E86-A(3):573-579.

    Google Scholar 

  24. 24.

    Cichocki A, Amari S-I, Siwek K, et al.Icalab toolboxes, 2003,

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Thang Viet Nguyen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nguyen, T.V., Patra, J.C. & Emmanuel, S. gpICA: A Novel Nonlinear ICA Algorithm Using Geometric Linearization. EURASIP J. Adv. Signal Process. 2007, 031951 (2006).

Download citation


  • Information Technology
  • Special Form
  • Quantum Information
  • Superior Performance
  • Independent Component Analysis