- Research Article
- Open access
- Published:
Model Compensation Approach Based on Nonuniform Spectral Compression Features for Noisy Speech Recognition
EURASIP Journal on Advances in Signal Processing volume 2007, Article number: 032546 (2007)
Abstract
This paper presents a novel model compensation (MC) method for the features of mel-frequency cepstral coefficients (MFCCs) with signal-to-noise-ratio- (SNR-) dependent nonuniform spectral compression (SNSC). Though these new MFCCs derived from a SNSC scheme have been shown to be robust features under matched case, they suffer from serious mismatch when the reference models are trained at different SNRs and in different environments. To solve this drawback, a compressed mismatch function is defined for the static observations with nonuniform spectral compression. The means and variances of the static features with spectral compression are derived according to this mismatch function. Experimental results show that the proposed method is able to provide recognition accuracy better than conventional MC methods when using uncompressed features especially at very low SNR under different noises. Moreover, the new compensation method has a computational complexity slightly above that of conventional MC methods.
References
Chu KK, Leung SH: SNR-dependent non-uniform spectral compression for noisy speech recognition. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '04), May 2004, Montreal, Quebec, Canada 1: 973–976.
Lotter T, Benien C, Vary P: Multichannel direction-independent speech enhancement using spectral amplitude estimation. EURASIP Journal on Applied Signal Processing 2003,2003(11):1147-1156. 10.1155/S1110865703305025
Gales MJF, Young SJ: Cepstral parameter compensation for HMM recognition in noise. Speech Communication 1993,12(3):231-239. 10.1016/0167-6393(93)90093-Z
Gales MJF, Young SJ: Robust continuous speech recognition using parallel model combination. IEEE Transactions on Speech and Audio Processing 1996,4(5):352-359. 10.1109/89.536929
Hung J-W, Shen J-L, Lee L-S: New approaches for domain transformation and parameter combination for improved accuracy in parallel model combination (PMC) techniques. IEEE Transactions on Speech and Audio Processing 2001,9(8):842-855. 10.1109/89.966087
Moreno PJ, Raj B, Stern RM: A vector Taylor series approach for environment-independent speech recognition. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '96), May 1996, Atlanta, Ga, USA 2: 733–736.
Gong Y: Speech recognition in noisy environments: a survey. Speech Communication 1995,16(3):261-291. 10.1016/0167-6393(94)00059-J
Zwicker E, Fastl H: Psychoacoustics, Facts and Models. 2nd edition. Springer, New York, NY, USA; 1999.
Hermansky H: Perceptual linear predictive (PLP) analysis of speech. Journal of the Acoustical Society of America 1990,87(4):1738-1752. 10.1121/1.399423
Abramowitz M, Stegun IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, NY, USA; 1972.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Ning, GX., Wei, G. & Chu, KK. Model Compensation Approach Based on Nonuniform Spectral Compression Features for Noisy Speech Recognition. EURASIP J. Adv. Signal Process. 2007, 032546 (2007). https://doi.org/10.1155/2007/32546
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/32546