Skip to main content

Linear Predictive Detection for Power Line Communications Impaired by Colored Noise

Abstract

Robust detection algorithms capable of mitigating the effects of colored noise are of primary interest in communication systems operating on power line channels. In this paper, we present a sequence detection scheme based on linear prediction to be applied in single-carrier power line communications impaired by colored noise. The presence of colored noise and the need for statistical sufficiency requires the design of an optimal front-end stage, whereas the need for a low-complexity solution suggests a more practical suboptimal front-end. The performance of receivers employing both optimal and suboptimal front-ends has been assessed by means of minimum mean square prediction error (MMSPE) analysis and bit-error rate (BER) simulations. We show that the proposed optimal solution improves the BER performance with respect to conventional systems and makes the receiver more robust against colored noise. As case studies, we investigate the performance of the proposed receivers in a low-voltage (LV) power line channel limited by colored background noise and in a high-voltage (HV) power line channel limited by corona noise.

References

  1. 1.

    Ferreira HC, Grove HM, Hooijen O, Vinck AJH: Power line communications: an overview. Proceedings of the 4th IEEE AFRICON Conference, September 1996, Stellenbosch, South Africa 2: 558–563.

    Article  Google Scholar 

  2. 2.

    Biglieri E: Coding and modulation for a horrible channel. IEEE Communications Magazine 2003,41(5):92-98. 10.1109/MCOM.2003.1200107

    Article  Google Scholar 

  3. 3.

    Galli S, Scaglione A, Dostert K: Broadband is power: internet access through the power line network. IEEE Communications Magazine 2003,41(5):82-83. 10.1109/MCOM.2003.1200105

    Article  Google Scholar 

  4. 4.

    Liu W, Widmer H, Raffin P: Broadband PLC access systems and field deployment in European power line networks. IEEE Communications Magazine 2003,41(5):114–118. 10.1109/MCOM.2003.1200110

    Article  Google Scholar 

  5. 5.

    Barmada S, Musolino A, Raugi M: Innovative model for time-varying power line communication channel response evaluation. IEEE Journal on Selected Areas in Communications 2006,24(7):1317-1326.

    Article  Google Scholar 

  6. 6.

    Galli S, Banwell TC: A deterministic frequency-domain model for the indoor power line transfer function. IEEE Journal on Selected Areas in Communications 2006,24(7):1304-1316.

    Article  Google Scholar 

  7. 7.

    Philipps H: Modelling of power line communication channels. Proceedings of the 3rd International Symposium on Power-Line Communications and Its Applications (ISPLC '99), March-April 1999, Lancaster, UK 14–21.

    Google Scholar 

  8. 8.

    Zimmermann M, Dostert K: A multipath model for the power line channel. IEEE Transactions on Communications 2002,50(4):553-559. 10.1109/26.996069

    Article  Google Scholar 

  9. 9.

    Amirshahi P, Kavehrad M: High-frequency characteristics of overhead multiconductor power lines for broadband communications. IEEE Journal on Selected Areas in Communications 2006,24(7):1292-1303.

    Article  Google Scholar 

  10. 10.

    Meng H, Guan YL, Chen S: Modeling and analysis of noise effects on broadband power line communications. IEEE Transactions on Power Delivery 2005,20(2, part 1):630-637. 10.1109/TPWRD.2005.844349

    Article  Google Scholar 

  11. 11.

    Götz M, Rapp M, Dostert K: Power line channel characteristics and their effect on communication system design. IEEE Communications Magazine 2004,42(4):78-86.

    Article  Google Scholar 

  12. 12.

    Degardin V, Lienard M, Zeddam A, Gauthier F, Degauque P: Classification and characterization of impulsive noise on indoor power line used for data communications. IEEE Transactions on Consumer Electronics 2002,48(4):913-918.

    Article  Google Scholar 

  13. 13.

    Mujčić A, Suljanović N, Zajc M, Tasič JF: Power line noise model appropriate for investigation if channel coding methods. Proceedings of the International Conference on Computer as a Tool (EUROCON '03), September 2003, Ljubljana, Slovenia 1: 299–303.

    Google Scholar 

  14. 14.

    Middleton D: Statistical-physical models of electromagnetic interference. IEEE Transactions on Electromagnetic Compatibility 1977,19(3, part 1):106-127.

    Article  Google Scholar 

  15. 15.

    Middleton D: Procedures for determining the parameters of the first-order canonical models of class A and class B electromagnetic interference. IEEE Transactions on Electromagnetic Compatibility 1979,21(3):190-208.

    Article  Google Scholar 

  16. 16.

    Ghosh M: Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems. IEEE Transactions on Communications 1996,44(2):145-147. 10.1109/26.486604

    Article  Google Scholar 

  17. 17.

    Zimmermann M, Dostert K: Analysis and modeling of impulsive noise in broad-band power line communications. IEEE Transactions on Electromagnetic Compatibility 2002,44(1):249-258. 10.1109/15.990732

    Article  Google Scholar 

  18. 18.

    Suljanović N, Mujčić A, Zajc M, Tasič JF: Computation of high-frequency and time characteristics of corona noise on HV power line. IEEE Transactions on Power Delivery 2005,20(1):71-79. 10.1109/TPWRD.2004.838656

    Article  Google Scholar 

  19. 19.

    Burrascano P, Cristina S, D'Amore M: Performance evaluation of digital signal transmission channels on coronating power lines. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '88), June 1988, Espoo, Finland 1: 365–368.

    Google Scholar 

  20. 20.

    Burrascano P, Cristina S, D'Amore M: Digital generator of corona noise on power line carrier channels. IEEE Transactions on Power Delivery 1988,3(3):850-856. 10.1109/61.193860

    Article  Google Scholar 

  21. 21.

    Lodge JH, Moher ML: Maximum likelihood sequence estimation of CPM signals transmitted over Rayleigh flat-fading channels. IEEE Transactions on Communications 1990,38(6):787-794. 10.1109/26.57471

    Article  Google Scholar 

  22. 22.

    Makrakis D, Mathiopoulos PT, Bouras DP: Optimal decoding of coded PSK and QAM signals in correlated fast fading channels and AWGN: a combined envelope, multiple differential and coherent detection approach. IEEE Transactions on Communications 1994,42(1):63-75. 10.1109/26.275302

    Article  Google Scholar 

  23. 23.

    Yu X, Pasupathy S: Innovations-based MLSE for Rayleigh fading channels. IEEE Transactions on Communications 1995,43(2–4):1534-1544.

    Google Scholar 

  24. 24.

    Vitetta GM, Taylor DP: Maximum likelihood decoding of uncoded and coded PSK signal sequences transmitted over Rayleigh flat-fading channels. IEEE Transactions on Communications 1995,43(11):2750-2758. 10.1109/26.481226

    Article  Google Scholar 

  25. 25.

    Eleftheriou E, Hirt W: Improving performance of PRML/EPRML through noise prediction. IEEE Transactions on Magnetics 1996,32(5, part 1):3968-3970. 10.1109/20.539233

    Article  Google Scholar 

  26. 26.

    Eyuboglu MV, Qureshi SUH: Reduced-state sequence estimation with set partitioning and decision feedback. IEEE Transactions on Communications 1988,36(1):13-20. 10.1109/26.2724

    Article  Google Scholar 

  27. 27.

    Duel-Hallen A, Heegard C: Delayed decision-feedback sequence estimation. IEEE Transactions on Communications 1989,37(5):428-436. 10.1109/26.24594

    Article  Google Scholar 

  28. 28.

    Chevillat PR, Eleftheriou E: Decoding of trellis-encoded signals in the presence of intersymbol interference and noise. IEEE Transactions on Communications 1989,37(7):669-676. 10.1109/26.31158

    Article  Google Scholar 

  29. 29.

    Raheli R, Polydoros A, Tzou C-K: Per-survivor processing: a general approach to MLSE in uncertain environments. IEEE Transactions on Communications 1995,43(2–4):354-364.

    Article  Google Scholar 

  30. 30.

    Ferrari G, Colavolpe G, Raheli R: Detection Algorithms for Wireless Communications, with Applications to Wired and Storage Systems. John Wiley & Sons, London, UK; 2004.

    Google Scholar 

  31. 31.

    Pighi R, Raheli R: Linear predictive detection for power line communications impaired by colored noise. Proceedings of IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '06), March 2006, Orlando, Fla, USA 337–342.

    Google Scholar 

  32. 32.

    Wei L-F: Trellis-coded modulation with multidimensional constellations. IEEE Transactions on Information Theory 1987,33(4):483-501. 10.1109/TIT.1987.1057329

    MathSciNet  Article  Google Scholar 

  33. 33.

    Simon MK, Hinedi SM, Lindsey WC: Digital Communication Techniques: Signal Design and Detection. Prentice Hall-PTR, Englewood Cliffs, NJ, USA; 1994.

    Google Scholar 

  34. 34.

    Ungerboeck G: Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory 1982,28(1):55-67. 10.1109/TIT.1982.1056454

    MathSciNet  Article  Google Scholar 

  35. 35.

    Ferrari G, Colavolpe G, Raheli R: A unified framework for finite-memory detection. IEEE Journal on Selected Areas in Communications 2005,23(9):1697-1706.

    Article  Google Scholar 

  36. 36.

    Haykin S: Adaptive Filter Theory. 4th edition. Prentice-Hall, Englewood Cliffs, NJ, USA; 2001.

    Google Scholar 

  37. 37.

    Philipps H: Performance measurements of power line channels at high frequencies. Proceedings of the International Symposium on Power-Line Communications and Its Applications (ISPLC '98), March 1998, Tokyo, Japan 229–237.

    Google Scholar 

  38. 38.

    Smith AA Jr.: Power line noise survey. IEEE Transactions on Electromagnetic Compatibility 1972,14(1):31-32.

    Article  Google Scholar 

  39. 39.

    Esmailian T, Kschischang FR, Gulak PG: Characteristics of in-building power lines at high frequencies and their channel capacity. Proceedings of the International Symposium on Power-Line Communications and Its Applications (ISPLC '00), April 2000, Limerick, Ireland 52–59.

    Google Scholar 

  40. 40.

    Katayama M, Yamazato T, Okada H: A mathematical model of noise in narrowband power line communication systems. IEEE Journal on Selected Areas in Communications 2006,24(7):1267-1276.

    Article  Google Scholar 

  41. 41.

    Maruvada PS: Corona Performance on High-Voltage Transmission Lines. Research Studies Press, Baldock, UK; 2000.

    Google Scholar 

  42. 42.

    Suljanović N, Mujčić A, Zajc M, Tasič JF: Corona noise characteristics in high voltage PLC channel. Proceedings of the IEEE International Conference on Industrial Technology (ICIT '03), December 2003, Maribor, Slovenia 2: 1036–1039.

    Google Scholar 

  43. 43.

    Cristina S, D'Amore M: Analytical method for calculating corona noise on HVAC power line carrier communication channels. IEEE Transactions on Power Apparatus and Systems 1985,104(5):1017-1024.

    Article  Google Scholar 

  44. 44.

    Burrascano P, Cristina S, D'Amore M: Digital generator of corona noise on power line carrier channels. IEEE Power Systems Conference and Exposition (PSCE '87), July 1987, San Francisco, Calif, USA

    Google Scholar 

  45. 45.

    Burg JP: Maximum entropy spectral analysis. Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, 1967, Oklahoma City, Okla, USA 34–41.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Riccardo Pighi.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Pighi, R., Raheli, R. Linear Predictive Detection for Power Line Communications Impaired by Colored Noise. EURASIP J. Adv. Signal Process. 2007, 032818 (2007). https://doi.org/10.1155/2007/32818

Download citation

Keywords

  • Prediction Error
  • Detection Scheme
  • Power Line
  • Linear Prediction
  • Conventional System