Skip to main content

Digital-Signal-Type Identification Using an Efficient Identifier

Abstract

Automatic digital-signal-type identification plays an important role for various applications. This paper presents a highly efficient identifier (technique) that identifies a variety of digital signal types. In this technique, a selected number of the higher-order moments and the higher-order cumulants up to eighth are utilized as the effective features. A hierarchical support-vector-machine- (SVMs) based structure is proposed for multiclass classification. A genetic algorithm is proposed in order to improve the performance of the identifier. Genetic algorithm selects the suitable parameters of SVMs that are used in the structure of the classifier. Simulation results show that the proposed identifier has high performance for identification of the considered digital signal types even at very low SNRs.

References

  1. 1.

    Iversen A: The use of artificial neural networks for automatic modulation recognition. In Tech. Rep. HW-MACS-TR-0009. Heriot-Watt University, Edinburgh, Scotland; 2003.

    Google Scholar 

  2. 2.

    Wei W, Mendel JM: Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Transactions on Communications 2000,48(2):189-193. 10.1109/26.823550

    Article  Google Scholar 

  3. 3.

    Panagiotou P, Anastasopoulos A, Polydoros A: Likelihood ratio tests for modulation classification. Proceedings of the 21st Century Military Communications Conference (MILCOM '00), October 2000, Los Angeles, Calif, USA 2: 670–674.

    Article  Google Scholar 

  4. 4.

    Swami A, Sadler BM: Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications 2000,48(3):416-429. 10.1109/26.837045

    Article  Google Scholar 

  5. 5.

    Wong MLD, Nandi AK: Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Processing 2004,84(2):351-365. 10.1016/j.sigpro.2003.10.019

    Article  Google Scholar 

  6. 6.

    Mobasseri BG: Digital modulation classification using constellation shape. Signal Processing 2000,80(2):251-277. 10.1016/S0165-1684(99)00127-9

    Article  Google Scholar 

  7. 7.

    Azzouz EE, Nandi AK: Automatic identification of digital modulation types. Signal Processing 1995,47(1):55-69. 10.1016/0165-1684(95)00099-2

    Article  Google Scholar 

  8. 8.

    Lopatka J, Pedzisz M: Automatic modulation classification using statistical moments and a fuzzy classifier. Proceedings of the 5th International Conference on Signal Processing (ICSP '00), August 2000, Beijing, China 3: 1500–1506.

    Article  Google Scholar 

  9. 9.

    Ghani N, Lamontagne R: Neural networks applied to the classification of spectral features for automatic modulation recognition. Proceedings of IEEE Military Communications Conference (MILCOM '93), October 1993, Boston, Mass, USA 1: 111–115.

    Article  Google Scholar 

  10. 10.

    Nandi AK, Azzouz EE: Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications 1998,46(4):431-436. 10.1109/26.664294

    Article  Google Scholar 

  11. 11.

    Louis C, Sehier P: Automatic modulation recognition with a hierarchical neural network. Proceedings of IEEE Military Communications Conference (MILCOM '94), October 1994, Fort Monmouth, NJ, USA 3: 713–717.

    Google Scholar 

  12. 12.

    Mingquan L, Xianci X, Leming L: Cyclic spectral features based modulation recognition. Proceedings of International Conference on Communication Technology (ICCT '96), May 1996, Beijing, China 2: 792–795.

    Article  Google Scholar 

  13. 13.

    Avci E, Hanbay D, Varol A: An expert discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition. Expert Systems with Applications 2007,33(3):582-589. 10.1016/j.eswa.2006.06.001

    Article  Google Scholar 

  14. 14.

    Abrahamzadeh A, Seyedin SA: Automatic modulation type identification using WPA and SVM. International Journal of Tomography & Statistics 2006, 4: 17–28.

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Wu Z, Wang X, Gao Z, Ren G: Automatic digital modulation recognition based on support vector machines. Proceedings of International Conference on Neural Networks and Brain (ICNNB '05), October 2005, Beijing, China 2: 1025–1028.

    Google Scholar 

  16. 16.

    Mustafa H, Doroslovački M: Digital modulation recognition using support vector machine classifier. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, November 2004, Pacific Grove, Calif, USA 2: 2238–2242.

    Google Scholar 

  17. 17.

    Gang H, Jiandong L, Donghua L: Study of modulation recognition based on HOCs and SVM. Proceedings of the 59th IEEE Vehicular Technology Conference (VTC '04), May 2004, Milan, Italy 2: 898–902.

    Google Scholar 

  18. 18.

    El-Naqa I, Yang Y, Wernick MN, Galatsanos NP, Nishikawa RM: A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging 2002,21(12):1552-1563. 10.1109/TMI.2002.806569

    Article  Google Scholar 

  19. 19.

    Gürcan MN, Yardimci Y, Çetin AE, Ansari R: Detection of microcalcifications in mammograms using higher order statistics. IEEE Signal Processing Letters 1997,4(8):211-216.

    Article  Google Scholar 

  20. 20.

    McCullagh P: Tensor Methods in Statistics. Chapman & Hall, London, UK; 1987.

    Google Scholar 

  21. 21.

    Cortes C, Vapnic V: Support vector network. Machine Learning 1995,20(3):273-297.

    Google Scholar 

  22. 22.

    Schölkopf B, Burges C, Vapnik V: Extracting support data for a given task. Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining (KDD '95), August 1995, Montreal, Canada 252–257.

    Google Scholar 

  23. 23.

    Chapelle O, Vapnik V, Bousquet O, Mukherjee S: Choosing multiple parameters for support vector machines. Machine Learning 2002,46(1–3):131-159.

    Article  Google Scholar 

  24. 24.

    Michalewicz Z: Genetic Algorithms+Data Structures=Evolution Programs. 3rd edition. Springer, New York, NY, USA; 1999.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ataollah Abrahamzadeh.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Abrahamzadeh, A., Seyedin, S.A. & Dehghan, M. Digital-Signal-Type Identification Using an Efficient Identifier. EURASIP J. Adv. Signal Process. 2007, 037690 (2007). https://doi.org/10.1155/2007/37690

Download citation

Keywords

  • Genetic Algorithm
  • Information Technology
  • Digital Signal
  • Quantum Information
  • Signal Type