- Research Article
- Open Access
- Published:
Wavelet-Based Algorithm for Signal Analysis
EURASIP Journal on Advances in Signal Processing volume 2007, Article number: 038916 (2007)
Abstract
This paper presents a computational algorithm for identifying power frequency variations and integer harmonics by using wavelet-based transform. The continuous wavelet transform (CWT) using the complex Morlet wavelet (CMW) is adopted to detect the harmonics presented in a power signal. A frequency detection algorithm is developed from the wavelet scalogram and ridges. A necessary condition is established to discriminate adjacent frequencies. The instantaneous frequency identification approach is applied to determine the frequencies components. An algorithm based on the discrete stationary wavelet transform (DSWT) is adopted to denoise the wavelet ridges. Experimental work has been used to demonstrate the superiority of this approach as compared to the more conventional one such as the fast Fourier transform.
References
IEEE recommended practice for monitoring electric power quality IEEE Standards Board, June 1995
Lai LL, Chan WL, Tse CT, So ATP: Real-time frequency and harmonic evaluation using artificial neural networks. IEEE Transactions on Power Delivery 1999,14(1):52-59. 10.1109/61.736681
Chan WL, So ATP, Lai LL: Harmonics load signature recognition by wavelets transforms. Proceedings of International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT '00), April 2000, London, UK 666–671. IEEE Catalog no. 00EX382
Tse NCF: Practical application of wavelet to power quality analysis. Proceedings of IEEE Power Engineering Society General Meeting, June 2006, Montreal, Quebec, Canada 5. IEEE Catalogue no. 06CH37818C, CD ROM
Addison PS: The Illustrated Wavelet Transform Handbook. Institute of Physics, Bristol, UK; 2002.
Pham VL, Wong KP: Wavelet-transform-based algorithm for harmonic analysis of power system waveforms. IEE Proceedings: Generation, Transmission and Distribution 1999,146(3):249-254. 10.1049/ip-gtd:19990316
Strang G, Nguyen T: Wavelets and Filter Banks. Wellesley-Cambridge, Wellesley, Mass, USA; 1996.
Huang S-J, Hsieh C-T, Huang C-L: Application of Morlet wavelets to supervise power system disturbances. IEEE Transactions on Power Delivery 1999,14(1):235-241. 10.1109/61.736728
Teolis A: Computational Signal Processing with Wavelets. Birkhäuser, Boston, Mass, USA; 1998.
Misiti M, Misiti Y, Oppenheim G: Wavelet Toolbox for Use with Matlab. The Mathworks, Natick, Mass, USA; 1996.
Mallet S: A Wavelet Tour of Signal Processing. Academic Press, San Diego, Calif, USA; 1998.
Carmona RA, Hwang WL, Torrésani B: Multiridge detection and time-frequency reconstruction. IEEE Transactions on Signal Processing 1999,47(2):480-492. 10.1109/78.740131
Carmona RA, Hwang WL, Torresani B: Characterization of signals by the ridges of their wavelet transforms. IEEE Transactions on Signal Processing 1997,45(10):2586-2590. 10.1109/78.640725
Antoniadis A, Oppenheim G (Eds): Wavelets and Statistics, Lecture Notes in Statistics. Springer, New York, NY, USA; 1995.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Tse, N.C., Lai, L. Wavelet-Based Algorithm for Signal Analysis. EURASIP J. Adv. Signal Process. 2007, 038916 (2007). https://doi.org/10.1155/2007/38916
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/38916
Keywords
- Fast Fourier Transform
- Detection Algorithm
- Frequency Component
- Identification Approach
- Power Signal