Skip to main content

Advertisement

Application of the HLSVD Technique to the Filtering of X-Ray Diffraction Data

Article metrics

  • 752 Accesses

Abstract

A filter based on the Hankel-Lanczos singular value decomposition (HLSVD) technique is presented and applied for the first time to X-ray diffraction (XRD) data. Synthetic and real powder XRD intensity profiles of nanocrystals are used to study the filter performances with different noise levels. Results show the robustness of the HLSVD filter and its capability to extract easily and effciently the useful crystallographic information. These characteristics make the filter an interesting and user-friendly tool for processing of XRD data.

References

  1. 1.

    Mierzwa B, Pielaszek J: Smoothing of low-intensity noisy X-ray diffraction data by Fourier filtering: application to supported metal catalyst studies. Journal of Applied Crystallography 1997,30(5):544-546. 10.1107/S0021889897000198

  2. 2.

    Hieke A, Dörfler H-D: Methodical developments for X-ray diffraction measurements and data analysis on lyotropic liquid crystals applied to K-soap/glycerol systems. Colloid and Polymer Science 1999,277(8):762-776. 10.1007/s003960050450

  3. 3.

    Schmidt M, Rajagopal S, Ren Z, Moffat K: Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data. Biophysical Journal 2003,84(3):2112-2129. 10.1016/S0006-3495(03)75018-8

  4. 4.

    Rajagopal S, Schmidt M, Anderson S, Ihee H, Moffat K: Analysis of experimental time-resolved crystallographic data by singular value decomposition. Acta Crystallographica Section D 2004,60(5):860-871.

  5. 5.

    Aubanel EE, Oldham KB: Fourier smoothing without the fast Fourier transform. Byte 1985,10(2):207-222.

  6. 6.

    Wooff C: Smoothing of data by least squares fitting. Computer Physics Communications 1986,42(2):249-251. 10.1016/0010-4655(86)90040-8

  7. 7.

    Barkhuijsen H, de Beer R, van Ormondt D: Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals. Journal of Magnetic Resonance 1987,73(3):553-557.

  8. 8.

    Laudadio T, Mastronardi N, Vanhamme L, van Hecke P, van Huffel S: Improved Lanczos algorithms for blackbox MRS data quantitation. Journal of Magnetic Resonance 2002,157(2):292-297. 10.1006/jmre.2002.2593

  9. 9.

    Wales DJ: Structure, dynamics, and thermodynamics of clusters: tales from topographic potential surfaces. Science 1996,271(5251):925-929. 10.1126/science.271.5251.925

  10. 10.

    Siegel RW, Hu E, Cox DM, et al.: Nanostructure Science and Technolgy. A Worldwide Study. The Interagency Working Group on NanoScience, Engineering and Technolgy, https://doi.org/www.wtec.org/loyola/nano/

  11. 11.

    Zanchet D, Hall MBD, Ugarte D: Structure population in thioi-passivated gold nanoparticles. Journal of Physical Chemistry B 2000,104(47):11013-11018.

  12. 12.

    Golub GH, Reinsch C: Singular value decomposition and least squares solutions. Numerische Mathematik 1970,14(5):403-420. 10.1007/BF02163027

  13. 13.

    Anderson E, Bai Z, Bischof C, et al.: LAPACK Users' Guide. SIAM, Philadelphia, Pa, USA; 1995.

  14. 14.

    Young RA: The Rietvel Method. Oxford University Press, New York, NY, USA; 1993.

  15. 15.

    Cervellino A, Giannini C, Guagliardi A: Determination of nanoparticle structure type, size and strain distribution from X-ray data for monatomic f.c.c.-derived non-crystallographic nanoclusters. Journal of Applied Crystallography 2003,36(5):1148-1158. 10.1107/S0021889803013542

  16. 16.

    Taylor JR: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Scientific Books, Sausalito, Calif, USA; 1997.

  17. 17.

    Stoica P, Moses R: Introduction to Spectral Analysis. Prentice-Hall, Upper Saddle River, NJ, USA; 1997.

  18. 18.

    Simon HD: The Lanczos algorithm with partial reorthogonalization. Mathematics of Computation 1984,42(165):115-142. 10.1090/S0025-5718-1984-0725988-X

  19. 19.

    Marple SL: Digital Spectral Analysis with Applications. Prentice-Hall, Englewood Cliffs, NJ, USA; 1987.

  20. 20.

    Golub G, Pereyra V: Separable nonlinear least squares: the variable projection method and its applications. Inverse Problems 2003,19(2):R1-R26. 10.1088/0266-5611/19/2/201

  21. 21.

    Baxter BJC, Iserles A: On approximation by exponentials. Annals of Numerical Mathematics 1997, 4: 39–54. The heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of T. J. Rivlin, hskip 1em plus 0.5em minus 0.4em

  22. 22.

    Beylkin G, Monzón L: On approximation of functions by exponential sums. Applied and Computational Harmonic Analysis 2005,19(1):17-48. 10.1016/j.acha.2005.01.003

  23. 23.

    Bjoirck A: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, Pa, USA; 1996.

  24. 24.

    Kung SY, Arun KS, Bhaskar Rao DV: State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem. Journal of the Optical Society of America 1983,73(12):1799-1811. 10.1364/JOSA.73.001799

Download references

Author information

Correspondence to M. Ladisa.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Ladisa, M., Lamura, A., Laudadio, T. et al. Application of the HLSVD Technique to the Filtering of X-Ray Diffraction Data. EURASIP J. Adv. Signal Process. 2007, 039575 (2007) doi:10.1155/2007/39575

Download citation

Keywords

  • Information Technology
  • Noise Level
  • Diffraction Data
  • Quantum Information
  • Intensity Profile