Skip to main content

Locally Adaptive DCT Filtering for Signal-Dependent Noise Removal


This work addresses the problem of signal-dependent noise removal in images. An adaptive nonlinear filtering approach in the orthogonal transform domain is proposed and analyzed for several typical noise environments in the DCT domain. Being applied locally, that is, within a window of small support, DCT is expected to approximate the Karhunen-Loeve decorrelating transform, which enables effective suppression of noise components. The detail preservation ability of the filter allowing not to destroy any useful content in images is especially emphasized and considered. A local adaptive DCT filtering for the two cases, when signal-dependent noise can be and cannot be mapped into additive uncorrelated noise with homomorphic transform, is formulated. Although the main issue is signal-dependent and pure multiplicative noise, the proposed filtering approach is also found to be competing with the state-of-the-art methods on pure additive noise corrupted images.


  1. 1.

    Haralick RM, Shapiro LG: Computer and Robot Vision. Addison-Wesley, Reading, Mass, USA; 1992.

    Google Scholar 

  2. 2.

    Pierdicca N, Crapolicchio R, Basili P, Ciotti P, d'Auria G, Marzano FS: Classification of multifrequency radar polarimetric data: role and contribution of vectorial filters. Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS '95), July 1995, Firenze, Italy 3: 1915–1917.

    Google Scholar 

  3. 3.

    Astola J, Kuosmanen P: Fundamentals of Nonlinear Digital Filtering. CRC Press LLC, Boca Raton, Fla, USA; 1997.

    MATH  Google Scholar 

  4. 4.

    Pitas I, Venetsanopoulos AN: Nonlinear Digital Filters: Principles and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1990.

    Book  Google Scholar 

  5. 5.

    Strang G, Nguyen T: Wavelets and Filter Banks. Wellesley Cambridge Press, Wellesley, Mass, USA; 1996.

    MATH  Google Scholar 

  6. 6.

    Öktem R, Egiazarian K: Transform domain algorithm for reducing effect of film-grain noise in image compression. Electronics Letters 1999,35(21):1830-1831. 10.1049/el:19991261

    Article  Google Scholar 

  7. 7.

    Donoho DL: De-noising by soft-thresholding. IEEE Transactions on Information Theory 1995,41(3):613-627. 10.1109/18.382009

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bharath AA, Ng J: A steerable complex wavelet construction and its application to image denoising. IEEE Transactions on Image Processing 2005,14(7):948-959.

    MathSciNet  Article  Google Scholar 

  9. 9.

    Crouse MS, Nowak RD, Baraniuk RG: Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing 1998,46(4):886-902. 10.1109/78.668544

    MathSciNet  Article  Google Scholar 

  10. 10.

    Şendur L, Selesnick IW: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing 2002,50(11):2744-2756. 10.1109/TSP.2002.804091

    Article  Google Scholar 

  11. 11.

    Shui P-L: Image denoising algorithm via doubly local Wiener filtering with directional windows in wavelet domain. IEEE Signal Processing Letters 2005,12(10):681-684.

    Article  Google Scholar 

  12. 12.

    Hyvarinen A, Hoyer P, Oja E: Image denoising by sparse code shrinkage. In Intelligent Signal Processing. Edited by: Haykin S, Kosko B. IEEE Press, New York, NY, USA; 2001:554-568.

    Google Scholar 

  13. 13.

    Muresan DD, Parks TW: Adaptive principal components and image denoising. Proceedings of IEEE International Conference on Image Processing (ICIP '03), September 2003, Barcelona, Spain 1: 101–104.

    Google Scholar 

  14. 14.

    Motwani MC, Gadiya MC, Motwani RC, Harris FC: Survey of image denoising techniques. Proceedings of Global Signal Processing Expo and Conference (GSPx '04), September 2004, Santa Clara, Calif, USA

    Google Scholar 

  15. 15.

    Melnik V: Nonlinear locally adaptive techniques for image filtering and restoration in mixed noise environments, Thesis for the degree of Doctor of Technology.

    Google Scholar 

  16. 16.

    Tsymbal OV, Lukin VV, Ponomarenko NN, Zelensky AA, Egiazarian K, Astola JT: Three-state locally adaptive texture preserving filter for radar and optical image processing. EURASIP Journal on Applied Signal Processing 2005,2005(8):1185-1204. 10.1155/ASP.2005.1185

    MATH  Google Scholar 

  17. 17.

    Ponomarenko NN, Lukin VV, Zelensky AA, Egiazarian K, Astola JT: Locally adaptive image filtering based on learning with clustering. Image Processing: Algorithms and Systems IV, January 2005, San Jose, Calif, USA, Proceedings of SPIE 5672: 94–105.

    Google Scholar 

  18. 18.

    Melnik VP, Lukin VV, Zelensky AA, Astola JT, Kuosmanen P: Local activity indicators for hard-switching adaptive filtering of images with mixed noise. Optical Engineering 2001,40(8):1441-1455. 10.1117/1.1385815

    Article  Google Scholar 

  19. 19.

    Oliver C, Quegan S: Understanding Synthetic Aperture Radar Images. SciTech, Raleigh, NC, USA; 2004.

    Google Scholar 

  20. 20.

    Solbo S, Eltoft T: Homomorphic wavelet-based statistical despeckling of SAR images. IEEE Transactions on Geoscience and Remote Sensing 2004,42(4):711-721.

    Article  Google Scholar 

  21. 21.

    Lukin VV, Melnik VP, Chemerovsky VI, Peltonen S, Kuosmanen P: Use of homomorphic transforms in locally adaptive filtering of radar images. Nonlinear Image Processing XI, January 2000, San Jose, Calif, USA, Proceedings of SPIE 3961: 184–195.

    Article  Google Scholar 

  22. 22.

    Egiazarian KO, Melnik VP, Lukin VV, Astola JT: Local transform-based denoising for radar image processing. Nonlinear Image Processing and Pattern Analysis XII, January 2001, San Jose, Calif, USA, Proceedings of SPIE 4304: 170–178.

    Article  Google Scholar 

  23. 23.

    Lee JS: Refined filtering of noise using local statistics. Computer Graphics and Image Processing 1983, (24):259-269.

  24. 24.

    Kuan DT, Sawchuk AA, Strand TC, Chavel P: Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Transactions on Pattern Analysis and Machine Intelligence 1985,7(2):165-177.

    Article  Google Scholar 

  25. 25.

    Klaine L, Vozel B, Chehdi K: An integro-differential method for adaptive filtering of additive or multiplicative noise. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 2: 1001–1004.

    Google Scholar 

  26. 26.

    Sadhar SI, Rajagopalan AN: Image estimation in film-grain noise. IEEE Signal Processing Letters 2005,12(3):238-241.

    Article  Google Scholar 

  27. 27.

    Yaroslavsky L, Eden M: Fundamentals of Digital Optics. Birkhauser, Boston, Mass, USA; 1996.

    Book  Google Scholar 

  28. 28.

    Coifman R, Donoho DL: Translation-invariant de-noising. In Wavelets and Statistics, Lecture Notes in Statistics. Volume 103. Edited by: Antoniadis A. Springer, New York, NY, USA; 1995:125-150. 10.1007/978-1-4612-2544-7_9

    Google Scholar 

  29. 29.

    Portilla J, Strela V, Wainwright MJ, Simoncelli EP: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing 2003,12(11):1338-1351. 10.1109/TIP.2003.818640

    MathSciNet  Article  Google Scholar 

  30. 30.

    Donoho DL, Johnstone JM: Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994,81(3):425-455. 10.1093/biomet/81.3.425

    MathSciNet  Article  Google Scholar 

  31. 31.

    Akansu AN, Haddad RA: Multiresolution Signal Decomposition: Transforms, Subbands, Wavelets. 2nd edition. Academic Press, San Diego, Calif, USA; 2001.

    MATH  Google Scholar 

  32. 32.

    Ponomarenko NN, Lukin VV, Egiazarian K, Astola J: DCT based high quality image compression. Proceedings of the 14th Scandinavian Conference on Image Analysis (SCIA '05), June 2005, Joensuu, Finland, Lecture Notes in Computer Science 3540: 1177–1185.

    Google Scholar 

  33. 33.

    Lukin VV, Ponomarenko NN, Alekseyev LYu, Melnik VP, Astola JT: Two-stage radar image despeckling based on local statistic Lee and sigma filtering. Nonlinear Image Processing and Pattern Analysis XII, January 2001, San Jose, Calif, USA, Proceedings of SPIE 4304: 106–117.

    Article  Google Scholar 

  34. 34.

    Huang H, Lin X, Rahardja S, Yu R: A method for realizing reversible integer type-IV discrete cosine transform (IntDCT-IV). Proceedings of the 7th International Conference on Signal Processing (ICSP '04), August-September 2004, Beijing, China 1: 101–104.

    Google Scholar 

  35. 35.

    Guleryuz OG: Weighted overcomplete denoising. Proceedings of the 37th Conference Record of the Asilomar Conference on Signals, Systems and Computers, November 2003, Pacific Grove, Calif, USA 2: 1992–1996.

    Google Scholar 

  36. 36.

    Egiazarian K, Astola J, Helsingius M, Kuosmanen P: Adaptive denoising and lossy compression of images in transform domain. Journal of Electronic Imaging 1999,8(3):233-245. 10.1117/1.482673

    Article  Google Scholar 

  37. 37.

    Aiazzi B, Baronti S, Alparone L: Blind image estimation through fuzzy matching pursuits. Proceedings of IEEE International Conference on Image Processing (ICIP '01), October 2001, Thessaloniki, Greece 1: 241–244.

    Google Scholar 

  38. 38.

    Argenti F, Torricelli G, Alparone L: Signal-dependent noise removal in the undecimated wavelet domain. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '02), May 2002, Orlando, Fla, USA 4: 3293–3296.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ruşen Öktem.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Öktem, R., Egiazarian, K., Lukin, V.V. et al. Locally Adaptive DCT Filtering for Signal-Dependent Noise Removal. EURASIP J. Adv. Signal Process. 2007, 042472 (2007).

Download citation


  • Information Technology
  • Quantum Information
  • Main Issue
  • Additive Noise
  • Effective Suppression