Skip to main content

Advertisement

Multichannel ECG and Noise Modeling: Application to Maternal and Fetal ECG Signals

Article metrics

  • 3347 Accesses

  • 66 Citations

Abstract

A three-dimensional dynamic model of the electrical activity of the heart is presented. The model is based on the single dipole model of the heart and is later related to the body surface potentials through a linear model which accounts for the temporal movements and rotations of the cardiac dipole, together with a realistic ECG noise model. The proposed model is also generalized to maternal and fetal ECG mixtures recorded from the abdomen of pregnant women in single and multiple pregnancies. The applicability of the model for the evaluation of signal processing algorithms is illustrated using independent component analysis. Considering the difficulties and limitations of recording long-term ECG data, especially from pregnant women, the model described in this paper may serve as an effective means of simulation and analysis of a wide range of ECGs, including adults and fetuses.

References

  1. 1.

    Dössel O: Inverse problem of electro- and magnetocardiography: review and recent progress. International Journal of Bioelectromagnetism 2000.,2(2):

  2. 2.

    van Oosterom A: Beyond the dipole; modeling the genesis of the electrocardiogram. In 100 Years Einthoven. The Einthoven Foundation, Leiden, The Netherlands; 2002:7-15.

  3. 3.

    Malmivuo JA, Plonsey R (Eds): Bioelectromagnetism, Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York, NY, USA; 1995.

  4. 4.

    Oostendorp T: Modeling the fetal ECG, Ph.D. dissertation.

  5. 5.

    Kanjilal PP, Palit S, Saha G: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Transactions on Biomedical Engineering 1997,44(1):51-59. 10.1109/10.553712

  6. 6.

    Gao P, Chang E-C, Wyse L: Blind separation of fetal ECG from single mixture using SVD and ICA. Proceedings of the Joint Conference of the 4th International Conference on Information, Communications and Signal Processing, and the 4th Pacific Rim Conference on Multimedia (ICICS-PCM '03), December 2003, Singapore 3: 1418–1422.

  7. 7.

    Callaerts D, Sansen W, Vandewalle J, Vantrappen G, Janssen J: Description of a real-time system to extract the fetal electrocardiogram. Clinical Physics and Physiological Measurement 1989,10(B):7-10. 10.1088/0143-0815/10/4B/001

  8. 8.

    De Lathauwer L, De Moor B, Vandewalle J: Fetal electrocardiogram extraction by blind source subspace separation. IEEE Transactions on Biomedical Engineering 2000,47(5):567-572. 10.1109/10.841326

  9. 9.

    Vrins F, Jutten C, Verleysen M: Sensor array and electrode selection for non-invasive fetal electrocardiogram extraction by independent component analysis. In Proceedings of 5th International Conference on Independent Component Analysis and Blind Signal Separation (ICA '04), September 2004, Granada, Spain, Lecture Notes in Computer Science Edited by: Puntonet CG, Prieto A. 3195: 1017–1014.

  10. 10.

    Azzerboni B, La Foresta F, Mammone N, Morabito FC: A new approach based on wavelet-ICA algorithms for fetal electrocardiogram extraction. Proceedings of 13th European Symposium on Artificial Neural Networks (ESANN '05), April 2005, Bruges, Belgium 193–198.

  11. 11.

    Sameni R, Jutten C, Shamsollahi MB: What ICA provides for ECG processing: application to noninvasive fetal ECG extraction. Proceedings of the International Symposium on Signal Processing and Information Technology (ISSPIT '06), August 2006, Vancouver, Canada 656–661.

  12. 12.

    Cichocki A, Amari S (Eds): Adaptive Blind Signal and Image Processing. John Wiley & Sons, New York, NY, USA; 2003.

  13. 13.

    McSharry PE, Clifford GD, Tarassenko L, Smith LA: A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering 2003,50(3):289-294. 10.1109/TBME.2003.808805

  14. 14.

    McSharry PE, Clifford GD: ECGSYN - a realistic ECG waveform generator. https://doi.org/www.physionet.org/physiotools/ecgsyn/

  15. 15.

    Bergveld P, Meijer WJH: A new technique for the suppression of the MECG. IEEE Transactions on Biomedical Engineering 1981,28(4):348-354.

  16. 16.

    Meijer WJH, Bergveld P: The simulation of the abdominal MECG. IEEE Transactions on Biomedical Engineering 1981,28(4):354-357.

  17. 17.

    Geselowitz DB: On the theory of the electrocardiogram. Proceedings of the IEEE 1989,77(6):857-876. 10.1109/5.29327

  18. 18.

    Bronzino J (Ed): The Biomedical Engineering Handbook. 2nd edition. CRC Press, Boca Raton, Fla, USA; 2000.

  19. 19.

    Frank E: An accurate, clinically practical system for spatial vectorcardiography. Circulation 1956,13(5):737-749.

  20. 20.

    Fletcher GF, Balady G, Froelicher VF, Hartley LH, Haskell WL, Pollock ML: Exercise standards: a statement for healthcare professionals from the American Heart Association. Circulation 1995,91(2):580-615.

  21. 21.

    Dower GE, Machado HB, Osborne JA: On deriving the electrocardiogram from vectorcardiographic leads. Clinical Cardiology 1980,3(2):87-95.

  22. 22.

    Hadžievski L, Bojović B, Vukčević V, et al.: A novel mobile transtelephonic system with synthesized 12-lead ECG. IEEE Transactions on Information Technology in Biomedicine 2004,8(4):428-438. 10.1109/TITB.2004.837869

  23. 23.

    Edenbrandt L, Pahlm O: Vectorcardiogram synthesized from a 12-lead ECG: superiority of the inverse Dower matrix. Journal of Electrocardiology 1988,21(4):361-367. 10.1016/0022-0736(88)90113-6

  24. 24.

    Clifford GD, McSharry PE: A realistic coupled nonlinear artificial ECG, BP, and respiratory signal generator for assessing noise performance of biomedical signal processing algorithms. Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems II, May 2004, Maspalomas, Spain, Proceedings of SPIE 5467: 290–301.

  25. 25.

    Sameni R, Shamsollahi MB, Jutten C, Babaie-Zade M: Filtering noisy ECG signals using the extended Kalman filter based on a modified dynamic ECG model. Proceedings of the 32nd Annual International Conference on Computers in Cardiology, September 2005, Lyon, France 1017–1020.

  26. 26.

    Clifford GD: A novel framework for signal representation and source separation: applications to filtering and segmentation of biosignals. Journal of Biological Systems 2006,14(2):169-183. 10.1142/S0218339006001830

  27. 27.

    Ben-Arie J, Rao KR: Nonorthogonal signal representation by Gaussians and Gabor functions. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 1995,42(6):402-413. 10.1109/82.392315

  28. 28.

    Fetal positions, WebMD https://doi.org/www.webmd.com/content/tools/1/slide_fetal_pos.htm

  29. 29.

    Clifford GD, Shoeb A, McSharry PE, Janz BA: Model-based filtering, compression and classification of the ECG. International Journal of Bioelectromagnetism 2005,7(1):158-161.

  30. 30.

    Bishop C: Neural Networks for Pattern Recognition. Oxford University Press, New York, NY, USA; 1995.

  31. 31.

    Weixue L, Ling X: Computer simulation of epicardial potentials using a heart-torso model with realistic geometry. IEEE Transactions on Biomedical Engineering 1996,43(2):211-217. 10.1109/10.481990

  32. 32.

    Frenkel L, Feder M: Recursive expectation-maximization (EM) algorithms for time-varying parameters with applications to multiple target tracking. IEEE Transactions on Signal Processing 1999,47(2):306-320. 10.1109/78.740104

  33. 33.

    Sameni R, Shamsollahi MB, Jutten C, Clifford GD: A nonlinear Bayesian filtering framework for ECG denoising. to appear in IEEE Transactions on Biomedical Engineering

  34. 34.

    Friesen GM, Jannett TC, Jadallah MA, Yates SL, Quint SR, Nagle HT: A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Biomedical Engineering 1990,37(1):85-98. 10.1109/10.43620

  35. 35.

    Moody G, Muldrow W, Mark R: Noise stress test for arrhythmia detectors. Proceedings of Annual International Conference on Computers in Cardiology, 1984, Salt Lake City, Utah, USA 381–384.

  36. 36.

    Hu X, Nenov V: A single-lead ECG enhancement algorithm using a regularized data-driven filter. IEEE Transactions on Biomedical Engineering 2006,53(2):347-351. 10.1109/TBME.2005.862529

  37. 37.

    Gelb A (Ed): Applied Optimal Estimation. MIT Press, Cambridge, Mass, USA; 1974.

  38. 38.

    Tarvainen MP, Georgiadis SD, Ranta-Aho PO, Karjalainen PA: Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm. Physiological Measurement 2006,27(3):225-239. 10.1088/0967-3334/27/3/002

  39. 39.

    Moody G, Muldrow W, Mark R: The MIT-BIH noise stress test database. https://doi.org/www.physionet.org/physiobank/database/nstdb/

  40. 40.

    Härmä A: Frequency-warped autoregressive modeling and filtering, Doctoral thesis. 2001.

  41. 41.

    The MIT-BIH PTB diagnosis database https://doi.org/www.physionet.org/physiobank/database/ptbdb/

  42. 42.

    Bousseljot R, Kreiseler D, Schnabel A: Nutzung der EKG-signaldatenbank CARDIODAT der PTB über das internet. Biomedizinische Technik 1995,40(1):S317-S318. 10.1515/bmte.1995.40.s1.317

  43. 43.

    Kreiseler D, Bousseljot R: Automatisierte EKG-auswertung mit hilfe der EKG-signaldatenbank CARDIODAT der PTB. Biomedizinische Technik 1995,40(1):S319-S320. 10.1515/bmte.1995.40.s1.319

  44. 44.

    De Moor B: Database for the identification of systems (DaISy). https://doi.org/homes.esat.kuleuven.be/~smc/daisy/

  45. 45.

    Taylor MJO, Smith MJ, Thomas M, et al.: Non-invasive fetal electrocardiography in singleton and multiple pregnancies. BJOG: An International Journal of Obstetrics and Gynaecology 2003,110(7):668-678. 10.1046/j.1471-0528.2003.02005.x

  46. 46.

    Cardoso J-F: Blind source separation and independent component analysis. https://doi.org/www.tsi.enst.fr/~cardoso/guidesepsou.html

  47. 47.

    Sameni R, Shamsollahi MB, Jutten C: Filtering electrocardiogram signals using the extended Kalman filter. Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '05), September 2005, Shanghai, China 5639–5642.

  48. 48.

    Gumbel EJ: Statistics of Extremes. Columbia University Press, New York, NY, USA; 1958.

  49. 49.

    Golub GH, van Loan CF: Matrix Computations. 3rd edition. Johns Hopkins University Press, Baltimore, Md, USA; 1996.

Download references

Author information

Correspondence to Reza Sameni.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Sameni, R., Clifford, G.D., Jutten, C. et al. Multichannel ECG and Noise Modeling: Application to Maternal and Fetal ECG Signals. EURASIP J. Adv. Signal Process. 2007, 043407 (2007) doi:10.1155/2007/43407

Download citation

Keywords

  • Pregnant Woman
  • Noise Model
  • Independent Component Analysis
  • Multiple Pregnancy
  • Dipole Model