Skip to main content

Recursive and Fast Recursive Capon Spectral Estimators


The Capon algorithm, which was originally proposed for wavenumber estimation in array signal processing, has become a powerful tool for spectral analysis. Over several decades, a significant amount of research attention has been devoted to the estimation of the Capon spectrum. Most of the developed algorithms thus far, however, rely on the direct computation of the inverse of the input correlation (or covariance) matrix, which can be computationally very expensive particularly when the dimension of the matrix is large. This paper deals with fast and efficient algorithms in computing the Capon spectrum. Inspired from the recursive idea established in adaptive signal processing theory, we first derive a recursive Capon algorithm. This new algorithm does not require an explicit matrix inversion, and hence it is more efficient to implement than the direct-inverse approach. We then develop a fast version of the recursive algorithm based on techniques used in fast recursive least-squares adaptive algorithms. This new fast algorithm can further reduce the complexity of the recursive Capon algorithm by an order of magnitude. Although our focus is on the Capon spectral estimation, the ideas shown in this paper can also be generalized and applied to other applications. To illustrate this, we will show how to apply the recursive idea to the estimation of the magnitude squared coherence function, which plays an important role for problems like time-delay estimation, signal-to-noise ratio estimation, and doubletalk detection in echo cancellation.


  1. 1.

    Marple SL Jr.: Digital Spectral Analysis with Applications. Prentice-Hall, Englewood Cliffs, NJ, USA; 1987.

    Google Scholar 

  2. 2.

    Kay SM: Modern Spectral Estimation: Theory and Application. Prentice-Hall, Englewood Cliffs, NJ, USA; 1988.

    MATH  Google Scholar 

  3. 3.

    Stoica P, Moses RL: Introduction to Spectral Analysis. Prentice-Hall, Upper Saddle River, NJ, USA; 1997.

    MATH  Google Scholar 

  4. 4.

    Capon J: High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE 1969,57(8):1408-1418.

    Article  Google Scholar 

  5. 5.

    Capon J: Maximum-likelihood spectral estimation. In Nonlinear Methods of Spectral Analysis. Edited by: Haykin S. Springer, New York, NY, USA; 1979:155-179.

    Google Scholar 

  6. 6.

    Lacoss RT: Data adaptive spectral analysis methods. Geophysics 1971,36(4):661-675. 10.1190/1.1440203

    Article  Google Scholar 

  7. 7.

    Stoica P, Jakobsson A, Li J: Matched-filter bank interpretation of some spectral estimators. Signal Processing 1998,66(1):45-59. 10.1016/S0165-1684(97)00239-9

    Article  Google Scholar 

  8. 8.

    Li H, Li J, Stoica P: Performance analysis of forward-backward matched-filterbank spectral estimators. IEEE Transactions on Signal Processing 1998,46(7):1954-1966. 10.1109/78.700967

    Article  Google Scholar 

  9. 9.

    Wang Y, Li J, Stoica P: Rank-deficient robust Capon filter bank approach to complex spectral estimation. IEEE Transactions on Signal Processing 2005,53(8, part 1):2713-2726.

    MathSciNet  Article  Google Scholar 

  10. 10.

    Frazho AE, Sherman PJ: On the convergence of the multichannel maximum likelihood point spectrum estimator. IEEE Transactions on Signal Processing 1991,39(5):1210-1212. 10.1109/78.80956

    Article  Google Scholar 

  11. 11.

    Austin RT, England AW, Wakefield GH: Special problems in the estimation of power-law spectra as applied to topographical modeling. IEEE Transactions on Geoscience and Remote Sensing 1994,32(4):928-939. 10.1109/36.298021

    Article  Google Scholar 

  12. 12.

    Li J, Stoica P: An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Transactions on Signal Processing 1996,44(6):1469-1484. 10.1109/78.506612

    Article  Google Scholar 

  13. 13.

    Frost OL: An algorithm for linearly constrained adaptive array processing. Proceedings of the IEEE 1972,60(8):926-935.

    Article  Google Scholar 

  14. 14.

    Applebaum SP, Chapman DJ: Adaptive arrays with main beam constraints. IEEE Transactions on Antennas and Propagation 1976,24(5):650-662. 10.1109/TAP.1976.1141416

    Article  Google Scholar 

  15. 15.

    Cox H, Zeskind RM, Owen MM: Robust adaptive beamforming. IEEE Transactions on Acoustics, Speech, and Signal Processing 1987,35(10):1365-1376. 10.1109/TASSP.1987.1165054

    Article  Google Scholar 

  16. 16.

    Steele AK, Byrne CL, Riley JL, Swift M: Performance comparison of high resolution bearing estimation algorithms using simulated and sea test data. IEEE Journal of Oceanic Engineering 1993,18(4):438-446. 10.1109/48.262294

    Article  Google Scholar 

  17. 17.

    Stoica P, Wang Z, Li J: Robust Capon beamforming. IEEE Signal Processing Letters 2003,10(6):172-175. 10.1109/LSP.2003.811637

    Article  Google Scholar 

  18. 18.

    Lee M-S, Katkovnik V, Kim Y-H: System modeling and signal processing for a switch antenna array radar. IEEE Transactions on Signal Processing 2004,52(6):1513-1523. 10.1109/TSP.2004.827204

    Article  Google Scholar 

  19. 19.

    Li J, Stoica P, Wang Z: On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing 2003,51(7):1702-1715. 10.1109/TSP.2003.812831

    Article  Google Scholar 

  20. 20.

    Hawkes M, Nehorai A: Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Transactions on Signal Processing 1998,46(9):2291-2304. 10.1109/78.709509

    Article  Google Scholar 

  21. 21.

    Martin N, Mars J, Martin J, Chorier C: A Capon's time-octave representation application in room acoustics. IEEE Transactions on Signal Processing 1995,43(8):1842-1854. 10.1109/78.403343

    Article  Google Scholar 

  22. 22.

    Ma W-K, Ching P-C, Vo B-N: Crosstalk resilient interface cancellation in microphone arrays using Capon beamforming. IEEE Transactions on Speech and Audio Processing 2004,12(5):468-476. 10.1109/TSA.2004.833011

    Article  Google Scholar 

  23. 23.

    Murthi MN, Rao DB: Minimum Variance Distortionless Response (MVDR) modeling of voiced speech. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '97), April 1997, Munich, Germany 3: 1687–1690.

    Google Scholar 

  24. 24.

    Murthi MN, Rao BD: All-pole modeling of speech based on the minimum variance distortionless response spectrum. IEEE Transactions on Speech and Audio Processing 2000,8(3):221-239. 10.1109/89.841206

    Article  Google Scholar 

  25. 25.

    Musicus BR: Fast MLM power spectrum estimation from uniformly spaced correlations. IEEE Transactions on Acoustics, Speech, and Signal Processing 1985,33(5):1333-1335. 10.1109/TASSP.1985.1164696

    Article  Google Scholar 

  26. 26.

    Ekman T, Jakobsson A, Stoica P: On the efficient implementation of the Capon spectral estimator. Proceedings of the 10th European Signal Processing Conference (EUSIPCO '00), September 2000, Tampere, Finland 1221–1224.

    Google Scholar 

  27. 27.

    Alty SR, Jakobsson A, Larsson EG: Efficient time-recursive implementation of matched filterbank spectral estimators. IEEE Transactions on Circuits and Systems I: Regular Papers 2005,52(3):516-521.

    Article  Google Scholar 

  28. 28.

    Wei L, Marple SL Jr.: A new least-squares-based minimum variance spectral estimator fast algorithm. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 4: 405–408.

    Google Scholar 

  29. 29.

    Tian Z, Bell KL, Van Trees HL: A recursive least squares implementation for LCMP beamforming under quadratic constraint. IEEE Transactions on Signal Processing 2001,49(6):1138-1145. 10.1109/78.923296

    Article  Google Scholar 

  30. 30.

    Pados DA, Karystinos GN: An iterative algorithm for the computation of the MVDR filter. IEEE Transactions on Signal Processing 2001,49(2):290-300. 10.1109/78.902111

    Article  Google Scholar 

  31. 31.

    Jakobsson A, Marple SL Jr., Stoica P: Computationally efficient two-dimensional Capon spectrum analysis. IEEE Transactions on Signal Processing 2000,48(9):2651-2661. 10.1109/78.863072

    Article  Google Scholar 

  32. 32.

    Liu Z-S, Li H, Li J: Efficient implementation of Capon and APES for spectral estimation. IEEE Transactions on Aerospace and Electronic Systems 1998,34(4):1314-1319. 10.1109/7.722716

    Article  Google Scholar 

  33. 33.

    Haykin S: Adaptive Filter Theory. 4th edition. Prentice-Hall, Englewood Cliffs, NJ, USA; 2002.

    MATH  Google Scholar 

  34. 34.

    Xu Z, Tsatsanis MK: Blind adaptive algorithms for minimum variance CDMA receivers. IEEE Transactions on Communications 2001,49(1):180-194. 10.1109/26.898261

    Article  Google Scholar 

  35. 35.

    Carter GC: Coherence and time delay estimation. In Signal Processing Handbook. Edited by: Chen CH. Marcel Dekker, New York, NY, USA; 1988:443-482.

    Google Scholar 

  36. 36.

    Benesty J, Gänsler T, Morgan DR, Sondhi MM, Gay SL: Advances in Network and Acoustic Echo Cancellation. Springer, Berlin, Germany; 2001.

    Book  Google Scholar 

  37. 37.

    Welch PD: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 1967,15(2):70-73. 10.1109/TAU.1967.1161901

    Article  Google Scholar 

  38. 38.

    Lagunas MA, Santamaria ME, Gasull A, Moreno A: Maximum likelihood filters in spectral estimation problems. Signal Processing 1986,10(1):19-34. 10.1016/0165-1684(86)90062-9

    MathSciNet  Article  Google Scholar 

  39. 39.

    Lagunas MA, Gasull A: Measuring true spectral density from ML filters (NMLM and q-NMLM spectral estimates). Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '84), March 1984, San Digo, Calif, USA 1: 608–611.

    Article  Google Scholar 

  40. 40.

    Gray RM: Toeplitz and circulant matrices: a review. In Internal Report. Stanford University, Stanford, Calif, USA; 2002.

    Google Scholar 

  41. 41.

    Bellanger MG: Adaptive Digital Filters and Signal Analysis. Marcel Dekker, New York, NY, USA; 1987.

    MATH  Google Scholar 

  42. 42.

    Fox L: An Introduction to Numerical Linear Algebra. Clarendon Press, Oxford, UK; 1964.

    MATH  Google Scholar 

  43. 43.

    Lagunas MA, Santamaria ME, Gasull A, Moreno A: Cross spectrum ML estimate. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '85), April 1985, Tampo, Fla, USA 77–80.

    Google Scholar 

  44. 44.

    Benesty J, Chen J, Huang Y: A generalized MVDR spectrum. IEEE Signal Processing Letters 2005,12(12):827-830.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jacob Benesty.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Benesty, J., Chen, J. & Huang, Y. Recursive and Fast Recursive Capon Spectral Estimators. EURASIP J. Adv. Signal Process. 2007, 045194 (2007).

Download citation


  • Spectral Estimation
  • Recursive Algorithm
  • Coherence Function
  • Array Signal
  • Fast Version