Skip to content

Advertisement

  • Research Article
  • Open Access

Recursive and Fast Recursive Capon Spectral Estimators

EURASIP Journal on Advances in Signal Processing20072007:045194

https://doi.org/10.1155/2007/45194

  • Received: 26 April 2006
  • Accepted: 11 December 2006
  • Published:

Abstract

The Capon algorithm, which was originally proposed for wavenumber estimation in array signal processing, has become a powerful tool for spectral analysis. Over several decades, a significant amount of research attention has been devoted to the estimation of the Capon spectrum. Most of the developed algorithms thus far, however, rely on the direct computation of the inverse of the input correlation (or covariance) matrix, which can be computationally very expensive particularly when the dimension of the matrix is large. This paper deals with fast and efficient algorithms in computing the Capon spectrum. Inspired from the recursive idea established in adaptive signal processing theory, we first derive a recursive Capon algorithm. This new algorithm does not require an explicit matrix inversion, and hence it is more efficient to implement than the direct-inverse approach. We then develop a fast version of the recursive algorithm based on techniques used in fast recursive least-squares adaptive algorithms. This new fast algorithm can further reduce the complexity of the recursive Capon algorithm by an order of magnitude. Although our focus is on the Capon spectral estimation, the ideas shown in this paper can also be generalized and applied to other applications. To illustrate this, we will show how to apply the recursive idea to the estimation of the magnitude squared coherence function, which plays an important role for problems like time-delay estimation, signal-to-noise ratio estimation, and doubletalk detection in echo cancellation.

Keywords

  • Spectral Estimation
  • Recursive Algorithm
  • Coherence Function
  • Array Signal
  • Fast Version

[1234567891011121314151617181920212223242526272829303132333435363738394041424344]

Authors’ Affiliations

(1)
Université du Québec, INRS-EMT, 800 de la Gauchetière Ouest, Suite 6900, Montréal, Québec, H5A 1K6, Canada
(2)
Bell Laboratories, Alcatel-Lucent, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

References

  1. Marple SL Jr.: Digital Spectral Analysis with Applications. Prentice-Hall, Englewood Cliffs, NJ, USA; 1987.Google Scholar
  2. Kay SM: Modern Spectral Estimation: Theory and Application. Prentice-Hall, Englewood Cliffs, NJ, USA; 1988.MATHGoogle Scholar
  3. Stoica P, Moses RL: Introduction to Spectral Analysis. Prentice-Hall, Upper Saddle River, NJ, USA; 1997.MATHGoogle Scholar
  4. Capon J: High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE 1969,57(8):1408-1418.View ArticleGoogle Scholar
  5. Capon J: Maximum-likelihood spectral estimation. In Nonlinear Methods of Spectral Analysis. Edited by: Haykin S. Springer, New York, NY, USA; 1979:155-179.View ArticleGoogle Scholar
  6. Lacoss RT: Data adaptive spectral analysis methods. Geophysics 1971,36(4):661-675. 10.1190/1.1440203View ArticleGoogle Scholar
  7. Stoica P, Jakobsson A, Li J: Matched-filter bank interpretation of some spectral estimators. Signal Processing 1998,66(1):45-59. 10.1016/S0165-1684(97)00239-9View ArticleMATHGoogle Scholar
  8. Li H, Li J, Stoica P: Performance analysis of forward-backward matched-filterbank spectral estimators. IEEE Transactions on Signal Processing 1998,46(7):1954-1966. 10.1109/78.700967View ArticleGoogle Scholar
  9. Wang Y, Li J, Stoica P: Rank-deficient robust Capon filter bank approach to complex spectral estimation. IEEE Transactions on Signal Processing 2005,53(8, part 1):2713-2726.MathSciNetView ArticleGoogle Scholar
  10. Frazho AE, Sherman PJ: On the convergence of the multichannel maximum likelihood point spectrum estimator. IEEE Transactions on Signal Processing 1991,39(5):1210-1212. 10.1109/78.80956View ArticleGoogle Scholar
  11. Austin RT, England AW, Wakefield GH: Special problems in the estimation of power-law spectra as applied to topographical modeling. IEEE Transactions on Geoscience and Remote Sensing 1994,32(4):928-939. 10.1109/36.298021View ArticleGoogle Scholar
  12. Li J, Stoica P: An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Transactions on Signal Processing 1996,44(6):1469-1484. 10.1109/78.506612View ArticleGoogle Scholar
  13. Frost OL: An algorithm for linearly constrained adaptive array processing. Proceedings of the IEEE 1972,60(8):926-935.View ArticleGoogle Scholar
  14. Applebaum SP, Chapman DJ: Adaptive arrays with main beam constraints. IEEE Transactions on Antennas and Propagation 1976,24(5):650-662. 10.1109/TAP.1976.1141416View ArticleGoogle Scholar
  15. Cox H, Zeskind RM, Owen MM: Robust adaptive beamforming. IEEE Transactions on Acoustics, Speech, and Signal Processing 1987,35(10):1365-1376. 10.1109/TASSP.1987.1165054View ArticleGoogle Scholar
  16. Steele AK, Byrne CL, Riley JL, Swift M: Performance comparison of high resolution bearing estimation algorithms using simulated and sea test data. IEEE Journal of Oceanic Engineering 1993,18(4):438-446. 10.1109/48.262294View ArticleGoogle Scholar
  17. Stoica P, Wang Z, Li J: Robust Capon beamforming. IEEE Signal Processing Letters 2003,10(6):172-175. 10.1109/LSP.2003.811637View ArticleGoogle Scholar
  18. Lee M-S, Katkovnik V, Kim Y-H: System modeling and signal processing for a switch antenna array radar. IEEE Transactions on Signal Processing 2004,52(6):1513-1523. 10.1109/TSP.2004.827204View ArticleGoogle Scholar
  19. Li J, Stoica P, Wang Z: On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing 2003,51(7):1702-1715. 10.1109/TSP.2003.812831View ArticleGoogle Scholar
  20. Hawkes M, Nehorai A: Acoustic vector-sensor beamforming and Capon direction estimation. IEEE Transactions on Signal Processing 1998,46(9):2291-2304. 10.1109/78.709509View ArticleGoogle Scholar
  21. Martin N, Mars J, Martin J, Chorier C: A Capon's time-octave representation application in room acoustics. IEEE Transactions on Signal Processing 1995,43(8):1842-1854. 10.1109/78.403343View ArticleGoogle Scholar
  22. Ma W-K, Ching P-C, Vo B-N: Crosstalk resilient interface cancellation in microphone arrays using Capon beamforming. IEEE Transactions on Speech and Audio Processing 2004,12(5):468-476. 10.1109/TSA.2004.833011View ArticleGoogle Scholar
  23. Murthi MN, Rao DB: Minimum Variance Distortionless Response (MVDR) modeling of voiced speech. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '97), April 1997, Munich, Germany 3: 1687-1690.Google Scholar
  24. Murthi MN, Rao BD: All-pole modeling of speech based on the minimum variance distortionless response spectrum. IEEE Transactions on Speech and Audio Processing 2000,8(3):221-239. 10.1109/89.841206View ArticleGoogle Scholar
  25. Musicus BR: Fast MLM power spectrum estimation from uniformly spaced correlations. IEEE Transactions on Acoustics, Speech, and Signal Processing 1985,33(5):1333-1335. 10.1109/TASSP.1985.1164696View ArticleGoogle Scholar
  26. Ekman T, Jakobsson A, Stoica P: On the efficient implementation of the Capon spectral estimator. Proceedings of the 10th European Signal Processing Conference (EUSIPCO '00), September 2000, Tampere, Finland 1221-1224.Google Scholar
  27. Alty SR, Jakobsson A, Larsson EG: Efficient time-recursive implementation of matched filterbank spectral estimators. IEEE Transactions on Circuits and Systems I: Regular Papers 2005,52(3):516-521.View ArticleGoogle Scholar
  28. Wei L, Marple SL Jr.: A new least-squares-based minimum variance spectral estimator fast algorithm. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 4: 405-408.Google Scholar
  29. Tian Z, Bell KL, Van Trees HL: A recursive least squares implementation for LCMP beamforming under quadratic constraint. IEEE Transactions on Signal Processing 2001,49(6):1138-1145. 10.1109/78.923296View ArticleGoogle Scholar
  30. Pados DA, Karystinos GN: An iterative algorithm for the computation of the MVDR filter. IEEE Transactions on Signal Processing 2001,49(2):290-300. 10.1109/78.902111View ArticleGoogle Scholar
  31. Jakobsson A, Marple SL Jr., Stoica P: Computationally efficient two-dimensional Capon spectrum analysis. IEEE Transactions on Signal Processing 2000,48(9):2651-2661. 10.1109/78.863072View ArticleMATHGoogle Scholar
  32. Liu Z-S, Li H, Li J: Efficient implementation of Capon and APES for spectral estimation. IEEE Transactions on Aerospace and Electronic Systems 1998,34(4):1314-1319. 10.1109/7.722716View ArticleGoogle Scholar
  33. Haykin S: Adaptive Filter Theory. 4th edition. Prentice-Hall, Englewood Cliffs, NJ, USA; 2002.MATHGoogle Scholar
  34. Xu Z, Tsatsanis MK: Blind adaptive algorithms for minimum variance CDMA receivers. IEEE Transactions on Communications 2001,49(1):180-194. 10.1109/26.898261View ArticleMATHGoogle Scholar
  35. Carter GC: Coherence and time delay estimation. In Signal Processing Handbook. Edited by: Chen CH. Marcel Dekker, New York, NY, USA; 1988:443-482.Google Scholar
  36. Benesty J, Gänsler T, Morgan DR, Sondhi MM, Gay SL: Advances in Network and Acoustic Echo Cancellation. Springer, Berlin, Germany; 2001.View ArticleMATHGoogle Scholar
  37. Welch PD: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 1967,15(2):70-73. 10.1109/TAU.1967.1161901MathSciNetView ArticleGoogle Scholar
  38. Lagunas MA, Santamaria ME, Gasull A, Moreno A: Maximum likelihood filters in spectral estimation problems. Signal Processing 1986,10(1):19-34. 10.1016/0165-1684(86)90062-9MathSciNetView ArticleGoogle Scholar
  39. Lagunas MA, Gasull A: Measuring true spectral density from ML filters (NMLM and q-NMLM spectral estimates). Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '84), March 1984, San Digo, Calif, USA 1: 608-611.View ArticleGoogle Scholar
  40. Gray RM: Toeplitz and circulant matrices: a review. In Internal Report. Stanford University, Stanford, Calif, USA; 2002.Google Scholar
  41. Bellanger MG: Adaptive Digital Filters and Signal Analysis. Marcel Dekker, New York, NY, USA; 1987.MATHGoogle Scholar
  42. Fox L: An Introduction to Numerical Linear Algebra. Clarendon Press, Oxford, UK; 1964.MATHGoogle Scholar
  43. Lagunas MA, Santamaria ME, Gasull A, Moreno A: Cross spectrum ML estimate. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '85), April 1985, Tampo, Fla, USA 77-80.View ArticleGoogle Scholar
  44. Benesty J, Chen J, Huang Y: A generalized MVDR spectrum. IEEE Signal Processing Letters 2005,12(12):827-830.View ArticleGoogle Scholar

Copyright

Advertisement