Skip to main content

Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

Abstract

This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope-ary phase shift key (-PSK) signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded-PSK signaling (with). Then, it is extended to include coded-PSK modulation using trellis coded modulation (TCM). An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded-PSK signaling performs 3.1 to 5.2 dB better than uncoded-PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC) codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

References

  1. 1.

    Shannon C: A mathematical theory of communication. The Bell System Technical Journal 1948, 27: 379–423.

    MathSciNet  Article  Google Scholar 

  2. 2.

    Hochwald B, Zeger K: Tradeoff between source and channel coding. IEEE Transactions on Information Theory 1997,43(5):1412–1424. 10.1109/18.623141

    MathSciNet  Article  Google Scholar 

  3. 3.

    Sherwood G, Zeger K: Progressive image coding for noisy channels. IEEE Signal Processing Letters 1997,4(7):189–191. 10.1109/97.596882

    Article  Google Scholar 

  4. 4.

    Said A, Pearlman W: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 1996,3(3):243–250.

    Article  Google Scholar 

  5. 5.

    Ramabadran T, Gaitonde S: A tutorial on CRC computations. IEEE Micro 1988,8(4):62–75. 10.1109/40.7773

    Article  Google Scholar 

  6. 6.

    Hamzaoui R, Stankovic V, Xiong Z: Optimized error protection of scalable image bitstreams. IEEE Signal Processing Magazine 2005,22(6):91–107.

    Article  Google Scholar 

  7. 7.

    Fossorier M, Xiong Z, Zeger K: Progressive source coding for a power constrained Gaussian channel. IEEE Transactions on Communications 2001,49(8):1301–1306. 10.1109/26.939838

    Article  Google Scholar 

  8. 8.

    Chande V, Farvardin N: Progressive transmission of images over memoryless noisy channels. IEEE Journal on Selected Areas in Communications 2000,18(6):850–860. 10.1109/49.848239

    Article  Google Scholar 

  9. 9.

    Farshchian M, Cho S, Pearlman W: Optimal error protection for real-time image and video transmission. IEEE Signal Processing Letters 2004,11(10):780–783. 10.1109/LSP.2004.835470

    Article  Google Scholar 

  10. 10.

    Ungerboeck G: Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory 1982,28(1):55–67. 10.1109/TIT.1982.1056454

    MathSciNet  Article  Google Scholar 

  11. 11.

    Biglieri E, Divsalar D, McLane P, Simon M: Introduction to Trellis-Coded Modulation with Applications. Macmillan, New York, NY, USA; 1991.

    Google Scholar 

  12. 12.

    Viterbi A, Wolf J, Zehavi E, Padovani R: A pragmatic approach to trellis-coded modulation. IEEE Communications Magazine 1989,27(7):11–99. 10.1109/35.31452

    Article  Google Scholar 

  13. 13.

    Wolf J, Zehavi E: codes: pragmatic trellis codes utilizing punctured convolutional codes. IEEE Communications Magazine 1995,33(2):94–99. 10.1109/35.350381

    Article  Google Scholar 

  14. 14.

    Kim J, Pottie G: On punctured trellis-coded modulation. IEEE Transactions on Information Theory 1996,42(2):627–636. 10.1109/18.485732

    Article  Google Scholar 

  15. 15.

    Berrou C, Glavieux A: Near optimum error correcting coding and decoding: turbo-codes. IEEE Transactions on Communications 1996,44(10):1261–1271. 10.1109/26.539767

    Article  Google Scholar 

  16. 16.

    Gallager R: Low-Density Parity-Check Codes. MIT Press, Cambridge, Mass, USA; 1963.

    Google Scholar 

  17. 17.

    Shapiro J: Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing 1993,41(12):3445–3462. 10.1109/78.258085

    Article  Google Scholar 

  18. 18.

    Proakis J: Digital Communications. 4th edition. McGraw-Hill, New York, NY, USA; 2001.

    Google Scholar 

  19. 19.

    Wicker S: Error Control Coding Systems for Digital Communication and Storage. Prentice-Hall, Englewood Cliffs, NJ, USA; 1995.

    Google Scholar 

  20. 20.

    Pei Y, Modestino J: Multi-layered video transmission over wireless channels using an adaptive modulation and coding scheme. Proceedings of International Conference on Image Processing (ICIP '01), October 2001, Thessaloniki, Greece 1009–1012.

    Google Scholar 

  21. 21.

    Bahl L, Cocke J, Jelinek F, Raviv J: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory 1974,20(2):284–287.

    MathSciNet  Article  Google Scholar 

  22. 22.

    Fragouli C, Wesel R: Turbo-encoder design for symbol-interleaved parallel concatenated trellis-coded modulation. IEEE Transactions on Communications 2001,49(3):425–435. 10.1109/26.911450

    Article  Google Scholar 

  23. 23.

    Robertson P, Worz T: Bandwidth-efficient turbo trellis-coded modulation using punctured component codes. IEEE Journals on Selected Areas in Communications 1998,16(2):206–218. 10.1109/49.661109

    Article  Google Scholar 

  24. 24.

    Goff S, Glavieux A, Berrou C: Turbo-codes and high spectral efficiency modulation. Proceedings of International Conference on Creationism (ICC '94), May 1994, New Orleans, La, USA 3: 1255–1259.

    Google Scholar 

  25. 25.

    Richardson T, Shokrollahi A, Urbanke R: Design of capacity-approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory 2001,47(1):619–637.

    MathSciNet  Article  Google Scholar 

  26. 26.

    Narayanan K, Altunbas I, Narayanaswami R: Design of codes for minimum shift keying based on density evolution. IEEE Transactions on Communications 2003,51(8):1283–1295. 10.1109/TCOMM.2003.815076

    Article  Google Scholar 

  27. 27.

    Hou J, Siegel PH, Milstein L, Pfister H: Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes. IEEE Transactions on Information Theory 2003,49(9):2141–2154. 10.1109/TIT.2003.815777

    MathSciNet  Article  Google Scholar 

  28. 28.

    Alouini M, Tang X, Goldsmith A: An adaptive modulation scheme for simultaneous voice and datatransmission over fading channels. IEEE Journal on Selected Areas in Communications 1999,17(5):837–850. 10.1109/49.768199

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nouman Raja.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Raja, N., Xiong, Z. & Fossorier, M. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints. EURASIP J. Adv. Signal Process. 2007, 049172 (2006). https://doi.org/10.1155/2007/49172

Download citation

Keywords

  • Additive White Gaussian Noise
  • Channel Code
  • Noisy Channel
  • Additive White Gaussian Noise Channel
  • Powerful Channel