Skip to main content

Iterative Reconfigurable Tree Search Detection of MIMO Systems

Abstract

This paper is concerned with reduced-complexity detection, referred to as iterative reconfigurable tree search (IRTS) detection, with application in iterative receivers for multiple-input multiple-output (MIMO) systems. Instead of the optimum maximum a posteriori probability detector, which performs brute force search over all possible transmitted symbol vectors, the new scheme evaluates only the symbol vectors that contribute significantly to the soft output of the detector. The IRTS algorithm is facilitated by carrying out the search on a reconfigurable tree, constructed by computing the reliabilities of symbols based on minimum mean-square error (MMSE) criterion and reordering the symbols according to their reliabilities. Results from computer simulations are presented, which proves the good performance of IRTS algorithm over a quasistatic Rayleigh channel even for relatively small list sizes.

References

  1. 1.

    Foschini GJ, Gans MJ: On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 1998,6(3):311–335. 10.1023/A:1008889222784

    Article  Google Scholar 

  2. 2.

    Telatar E: Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications 1999,10(6):585–595. 10.1002/ett.4460100604

    MathSciNet  Article  Google Scholar 

  3. 3.

    Sellathurai M, Haykin S: TURBO-BLAST for wireless communications: theory and experiments. IEEE Transactions on Signal Processing 2002,50(10):2538–2546. 10.1109/TSP.2002.803327

    Article  Google Scholar 

  4. 4.

    Haykin S, Sellathurai M, De Jong YLC, Willink TJ: Turbo-MIMO for wireless communications. IEEE Communications Magazine 2004,42(10):48–53. 10.1109/MCOM.2004.1341260

    Article  Google Scholar 

  5. 5.

    Stefanov A, Duman TM: Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: system model, decoding approaches, and practical considerations. IEEE Journal on Selected Areas in Communications 2001,19(5):958–968. 10.1109/49.924879

    Article  Google Scholar 

  6. 6.

    Hochwald BM, Ten Brink S: Achieving near-capacity on a multiple-antenna channel. IEEE Transactions on Communications 2003,51(3):389–399. 10.1109/TCOMM.2003.809789

    Article  Google Scholar 

  7. 7.

    Foschini GJ: Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal 1996,1(2):41–59.

    Article  Google Scholar 

  8. 8.

    Zhu H, Shi Z, Farhang-Boroujeny B: MIMO detection using Markov chain Monte Carlo techniques for near-capacity performance. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 3: 1017–1020.

    Google Scholar 

  9. 9.

    Zhu H, Farhang-Boroujeny B, Chen R-R: On performance of sphere decoding and Markov chain Monte Carlo detection methods. IEEE Signal Processing Letters 2005,12(10):669–672.

    Article  Google Scholar 

  10. 10.

    Luo J, Pattipati KR, Willett P, Levchuk GM: Fast optimal and suboptimal any-time algorithms for CDMA multiuser detection based on branch and bound. IEEE Transactions on Communications 2004,52(4):632–642. 10.1109/TCOMM.2004.826349

    Article  Google Scholar 

  11. 11.

    De Jong YLC, Willink TJ: Iterative tree search detection for MIMO wireless systems. IEEE Transactions on Communications 2005,53(6):930–935. 10.1109/TCOMM.2005.849638

    Article  Google Scholar 

  12. 12.

    Anderson JB, Mohan S: Sequential coding algorithms: a survey and cost analysis. IEEE Transactions on Communications 1984,32(2):169–176. 10.1109/TCOM.1984.1096023

    Article  Google Scholar 

  13. 13.

    Wang X, Poor HV: Iterative (Turbo) soft interference cancellation and decoding for coded CDMA. IEEE Transactions on Communications 1999,47(7):1046–1061. 10.1109/26.774855

    Article  Google Scholar 

  14. 14.

    Kot AD, Leung C: Reconfigurable trellis decoding of linear block codes. Proceedings of IEEE International Symposium on Information Theory, September 1995, Whistler, BC, Canada 128.

    Google Scholar 

  15. 15.

    Han YS, Hartmann CRP, Chen C-C: Efficient priority-first search maximum-likelihood soft-decision decoding of linear block codes. IEEE Transactions on Information Theory 1993,39(5):1514–1523. 10.1109/18.259636

    MathSciNet  Article  Google Scholar 

  16. 16.

    Vucetic B, Yuan JH: Space-Time Coding. John Wiley & Sons, New York, NY, USA; 2003.

    Google Scholar 

  17. 17.

    Proakis JG: Digital Communications. 3rd edition. McGraw-Hill, New York, NY, USA; 1995.

    Google Scholar 

  18. 18.

    Steingrimsson B, Luo Z-Q, Wong KM: Soft quasi-maximum-likelihood detection for multiple-antenna wireless channels. IEEE Transactions on Signal Processing 2003,51(11):2710–2719. 10.1109/TSP.2003.818203

    Article  Google Scholar 

  19. 19.

    Jaldén J, Ottersten B: On the complexity of sphere decoding in digital communications. IEEE Transactions on Signal Processing 2005,53(4):1474–1484.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wu Zheng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zheng, W., Song, W., Luo, H. et al. Iterative Reconfigurable Tree Search Detection of MIMO Systems. EURASIP J. Adv. Signal Process. 2007, 051269 (2006). https://doi.org/10.1155/2007/51269

Download citation

Keywords

  • Computer Simulation
  • Quantum Information
  • Probability Detector
  • MIMO System
  • Brute Force