Skip to main content

Hardware Implementation of a Modified Delay-Coordinate Mapping-Based QRS Complex Detection Algorithm


We present a modified delay-coordinate mapping-based QRS complex detection algorithm, suitable for hardware implementation. In the original algorithm, the phase-space portrait of an electrocardiogram signal is reconstructed in a two-dimensional plane using the method of delays. Geometrical properties of the obtained phase-space portrait are exploited for QRS complex detection. In our solution, a bandpass filter is used for ECG signal prefiltering and an improved method for detection threshold-level calculation is utilized. We developed the algorithm on the MIT-BIH Arrhythmia Database (sensitivity of 99.82 and positive predictivity of 99.82 ) and tested it on the long-term ST database (sensitivity of 99.72 and positive predictivity of 99.37 ). Our algorithm outperforms several well-known QRS complex detection algorithms, including the original algorithm.


  1. 1.

    Köhler B-U, Hennig C, Orglmeister R: The principles of software QRS detection. IEEE Engineering in Medicine and Biology Magazine 2002,21(1):42-57. 10.1109/51.993193

    Article  Google Scholar 

  2. 2.

    Pan J, Tompkins WJ: A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering 1985,32(3):230-236.

    Article  Google Scholar 

  3. 3.

    Thakor NV, Webster JG, Tompkins WJ: Estimation of QRS complex power spectra for design of a QRS filter. IEEE Transactions on Biomedical Engineering 1984,31(11):702-706.

    Article  Google Scholar 

  4. 4.

    Hamilton PS: Open Source ECG Analysis Software Documentation. E. P. Limited, Somerville, Mass, USA; 2002.

    Google Scholar 

  5. 5.

    Mark RG, Schluter PS, Moody GB, Devlin P, Chernoff D: An annotated ECG database for evaluating arrhythmia detectors. In Proceedings of the 4th Annual Conference of IEEE Engineering in Medicine and Biology Society on Frontiers of Engineering in Health Care, 1982, Philadelphia, Pa, USA. IEEE Computer Society Press; 205–210.

    Google Scholar 

  6. 6.

    Hamilton PS, Tompkins WJ: Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Transactions on Biomedical Engineering 1986,33(12):1157-1165.

    Article  Google Scholar 

  7. 7.

    Zong W, Moody GB, Jiang D: A robust open-source algorithm to detect onset and duration of QRS complexes. Computers in Cardiology, September 2003, Thessaloniki, Chalkidiki, Greece 30: 737–740.

    Google Scholar 

  8. 8.

    Christov II, Stoyanov TV: Steep slope method for real time QRS detection. Electrotechnics & Electronics E+E 2002, 1-2: 13–17.

    Google Scholar 

  9. 9.

    Christov II: Real time electrocardiogram QRS detection using combined adaptive threshold. Biomedical Engineering Online 2004,3(1):28. 10.1186/1475-925X-3-28

    Article  Google Scholar 

  10. 10.

    Kunzmann U, von Wagner G, Schöchlin J, Bolz A: Parameter extraction of ECG signals in real-time. Biomedizinische Technik 2002,47(1 part 2):875-878.

    Article  Google Scholar 

  11. 11.

    Lee J-W, Kim K-S, Lee B, Lee B, Lee M-H: A real time QRS detection using delay-coordinate mapping for the microcontroller implementation. Annals of Biomedical Engineering 2002,30(9):1140-1151.

    Article  Google Scholar 

  12. 12.

    Li C, Zheng C, Tai C: Detection of ECG characteristic points using wavelet transforms. IEEE Transactions on Biomedical Engineering 1995,42(1):21-28. 10.1109/10.362922

    Article  Google Scholar 

  13. 13.

    Kadambe S, Murray R, Boudreaux-Bartels GF: Wavelet transform-based QRS complex detector. IEEE Transactions on Biomedical Engineering 1999,46(7):838-848. 10.1109/10.771194

    Article  Google Scholar 

  14. 14.

    Saxena SC, Kumar V, Hamde ST: Feature extraction from ECG signals using wavelet transforms for disease diagnostics. International Journal of Systems Science 2002,33(13):1073-1085. 10.1080/00207720210167159

    Article  Google Scholar 

  15. 15.

    Martínez JP, Almeida R, Olmos S, Rocha AP, Laguna P: A wavelet-based ECG delineator: evaluation on standard databases. IEEE Transactions on Biomedical Engineering 2004,51(4):570-581. 10.1109/TBME.2003.821031

    Article  Google Scholar 

  16. 16.

    Bahoura M, Hassani M, Hubin M: DSP implementation of wavelet transform for real time ECG wave forms detection and heart rate analysis. Computer Methods and Programs in Biomedicine 1997,52(1):35-44. 10.1016/S0169-2607(97)01780-X

    Article  Google Scholar 

  17. 17.

    Jager F, Taddei A, Moody GB, et al.: Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Medical and Biological Engineering and Computing 2003,41(2):172-182. 10.1007/BF02344885

    Article  Google Scholar 

  18. 18.

    Perry DL: VHDL: Programming by Example. McGraw-Hill, New York, NY, USA; 2002.

    Google Scholar 

  19. 19.

    Lynn PA: Online digital filters for biological signals: some fast designs for a small computer. Medical and Biological Engineering and Computing 1977,15(5):534-540. 10.1007/BF02442281

    Article  Google Scholar 

  20. 20.

    Jager F: QRS complex detection in electrocardiogram, M.S. thesis. University of Ljubljana, Ljubljana, Slovenia; 1984.

    Google Scholar 

  21. 21.

    Afonso VX, Tompkins WJ, Nguyen TQ, Luo S: ECG beat detection using filter banks. IEEE Transactions on Biomedical Engineering 1999,46(2):192-202. 10.1109/10.740882

    Article  Google Scholar 

  22. 22.

    Poli R, Cagnoni S, Valli G: Genetic design of optimum linear and nonlinear QRS detectors. IEEE Transactions on Biomedical Engineering 1995,42(11):1137-1141. 10.1109/10.469381

    Article  Google Scholar 

  23. 23.

    Moody GB, Mark RG: Development and evaluation of a 2-lead ECG analysis program. Computers in Cardiology, 1983, Seattle, Wash, USA 39–44.

    Google Scholar 

  24. 24.


  25. 25.

    Long-Term ST Database at Physionet

  26. 26.

    Peiró MM, Ballester F, Paya G, Belenguer J, Colom R, Gadea R: FPGA custom DSP for ECG signal analysis and compression. Proceedings of the 14th International Conference on Field Programmable Logic and Application (FPL '04), August-September 2004, Leuven, Belgium, Lecture Notes in Computer Science 3203: 954–958.

    Article  Google Scholar 

  27. 27.

    Kuzume K, Niijima K, Takano S: FPGA-based lifting wavelet processor for real-time signal detection. Signal Processing 2004,84(10):1931-1940. 10.1016/j.sigpro.2004.06.020

    Article  Google Scholar 

  28. 28.

    Hermes RE, Geselowitz DB, Oliver GC: Development, distribution, and use of the American heart association database for ventricular arrhythmia detector evaluation. Computers in Cardiology, October 1980, Williamsburg, Va, USA 263–266.

    Google Scholar 

  29. 29.

    Rosado A, Bataller M, Guerrero JF, Calpe J, Francés JV, Magdalena JR: High performance hardware correlation coefficient assessment using programmable logic for ECG signals. Microprocessors and Microsystems 2003,27(1):33-39. 10.1016/S0141-9331(02)00083-2

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Matej Cvikl.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Cvikl, M., Jager, F. & Zemva, A. Hardware Implementation of a Modified Delay-Coordinate Mapping-Based QRS Complex Detection Algorithm. EURASIP J. Adv. Signal Process. 2007, 057286 (2007).

Download citation


  • Information Technology
  • Quantum Information
  • Detection Algorithm
  • Hardware Implementation
  • Complex Detection