- Research Article
- Open access
- Published:
Hardware Implementation of a Modified Delay-Coordinate Mapping-Based QRS Complex Detection Algorithm
EURASIP Journal on Advances in Signal Processing volume 2007, Article number: 057286 (2007)
Abstract
We present a modified delay-coordinate mapping-based QRS complex detection algorithm, suitable for hardware implementation. In the original algorithm, the phase-space portrait of an electrocardiogram signal is reconstructed in a two-dimensional plane using the method of delays. Geometrical properties of the obtained phase-space portrait are exploited for QRS complex detection. In our solution, a bandpass filter is used for ECG signal prefiltering and an improved method for detection threshold-level calculation is utilized. We developed the algorithm on the MIT-BIH Arrhythmia Database (sensitivity of 99.82 and positive predictivity of 99.82 ) and tested it on the long-term ST database (sensitivity of 99.72 and positive predictivity of 99.37 ). Our algorithm outperforms several well-known QRS complex detection algorithms, including the original algorithm.
References
Köhler B-U, Hennig C, Orglmeister R: The principles of software QRS detection. IEEE Engineering in Medicine and Biology Magazine 2002,21(1):42-57. 10.1109/51.993193
Pan J, Tompkins WJ: A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering 1985,32(3):230-236.
Thakor NV, Webster JG, Tompkins WJ: Estimation of QRS complex power spectra for design of a QRS filter. IEEE Transactions on Biomedical Engineering 1984,31(11):702-706.
Hamilton PS: Open Source ECG Analysis Software Documentation. E. P. Limited, Somerville, Mass, USA; 2002.
Mark RG, Schluter PS, Moody GB, Devlin P, Chernoff D: An annotated ECG database for evaluating arrhythmia detectors. In Proceedings of the 4th Annual Conference of IEEE Engineering in Medicine and Biology Society on Frontiers of Engineering in Health Care, 1982, Philadelphia, Pa, USA. IEEE Computer Society Press; 205–210.
Hamilton PS, Tompkins WJ: Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Transactions on Biomedical Engineering 1986,33(12):1157-1165.
Zong W, Moody GB, Jiang D: A robust open-source algorithm to detect onset and duration of QRS complexes. Computers in Cardiology, September 2003, Thessaloniki, Chalkidiki, Greece 30: 737–740.
Christov II, Stoyanov TV: Steep slope method for real time QRS detection. Electrotechnics & Electronics E+E 2002, 1-2: 13–17.
Christov II: Real time electrocardiogram QRS detection using combined adaptive threshold. Biomedical Engineering Online 2004,3(1):28. 10.1186/1475-925X-3-28
Kunzmann U, von Wagner G, Schöchlin J, Bolz A: Parameter extraction of ECG signals in real-time. Biomedizinische Technik 2002,47(1 part 2):875-878.
Lee J-W, Kim K-S, Lee B, Lee B, Lee M-H: A real time QRS detection using delay-coordinate mapping for the microcontroller implementation. Annals of Biomedical Engineering 2002,30(9):1140-1151.
Li C, Zheng C, Tai C: Detection of ECG characteristic points using wavelet transforms. IEEE Transactions on Biomedical Engineering 1995,42(1):21-28. 10.1109/10.362922
Kadambe S, Murray R, Boudreaux-Bartels GF: Wavelet transform-based QRS complex detector. IEEE Transactions on Biomedical Engineering 1999,46(7):838-848. 10.1109/10.771194
Saxena SC, Kumar V, Hamde ST: Feature extraction from ECG signals using wavelet transforms for disease diagnostics. International Journal of Systems Science 2002,33(13):1073-1085. 10.1080/00207720210167159
MartÃnez JP, Almeida R, Olmos S, Rocha AP, Laguna P: A wavelet-based ECG delineator: evaluation on standard databases. IEEE Transactions on Biomedical Engineering 2004,51(4):570-581. 10.1109/TBME.2003.821031
Bahoura M, Hassani M, Hubin M: DSP implementation of wavelet transform for real time ECG wave forms detection and heart rate analysis. Computer Methods and Programs in Biomedicine 1997,52(1):35-44. 10.1016/S0169-2607(97)01780-X
Jager F, Taddei A, Moody GB, et al.: Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Medical and Biological Engineering and Computing 2003,41(2):172-182. 10.1007/BF02344885
Perry DL: VHDL: Programming by Example. McGraw-Hill, New York, NY, USA; 2002.
Lynn PA: Online digital filters for biological signals: some fast designs for a small computer. Medical and Biological Engineering and Computing 1977,15(5):534-540. 10.1007/BF02442281
Jager F: QRS complex detection in electrocardiogram, M.S. thesis. University of Ljubljana, Ljubljana, Slovenia; 1984.
Afonso VX, Tompkins WJ, Nguyen TQ, Luo S: ECG beat detection using filter banks. IEEE Transactions on Biomedical Engineering 1999,46(2):192-202. 10.1109/10.740882
Poli R, Cagnoni S, Valli G: Genetic design of optimum linear and nonlinear QRS detectors. IEEE Transactions on Biomedical Engineering 1995,42(11):1137-1141. 10.1109/10.469381
Moody GB, Mark RG: Development and evaluation of a 2-lead ECG analysis program. Computers in Cardiology, 1983, Seattle, Wash, USA 39–44.
Long-Term ST Database at Physionet https://doi.org/physionet.org/physiobank/database/ltstdb/
Peiró MM, Ballester F, Paya G, Belenguer J, Colom R, Gadea R: FPGA custom DSP for ECG signal analysis and compression. Proceedings of the 14th International Conference on Field Programmable Logic and Application (FPL '04), August-September 2004, Leuven, Belgium, Lecture Notes in Computer Science 3203: 954–958.
Kuzume K, Niijima K, Takano S: FPGA-based lifting wavelet processor for real-time signal detection. Signal Processing 2004,84(10):1931-1940. 10.1016/j.sigpro.2004.06.020
Hermes RE, Geselowitz DB, Oliver GC: Development, distribution, and use of the American heart association database for ventricular arrhythmia detector evaluation. Computers in Cardiology, October 1980, Williamsburg, Va, USA 263–266.
Rosado A, Bataller M, Guerrero JF, Calpe J, Francés JV, Magdalena JR: High performance hardware correlation coefficient assessment using programmable logic for ECG signals. Microprocessors and Microsystems 2003,27(1):33-39. 10.1016/S0141-9331(02)00083-2
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Cvikl, M., Jager, F. & Zemva, A. Hardware Implementation of a Modified Delay-Coordinate Mapping-Based QRS Complex Detection Algorithm. EURASIP J. Adv. Signal Process. 2007, 057286 (2007). https://doi.org/10.1155/2007/57286
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/57286