Skip to main content

Selective Iterative Waterfilling for Digital Subscriber Lines

Abstract

This paper presents a high-performance, low-complexity, quasi-distributed dynamic spectrum management (DSM) algorithm suitable for DSL systems. We analytically demonstrate that the rate degradation of the distributed iterative waterfilling (IW) algorithm in near-far scenarios is caused by the insufficient utilization of all available frequency and power resources due to its nature of noncooperative game theoretic formulation. Inspired by this observation, we propose the selective IW (SIW) algorithm that can considerably alleviate the performance degradation of IW by applying IW selectively to different groups of users over different frequency bands so that all the available resources can be fully utilized. For users, the proposed SIW algorithm needs at most times the complexity of the IW algorithm, and is much simpler than the centralized optimal spectrum balancing (OSB), while it can offer a rate performance much better than that of the IW and close to the maximum possible rate region computed by the OSB in realistic near-far DSL scenarios. Furthermore, its predominantly distributed structure makes it suitable for DSL implementation.

References

  1. 1.

    Ginis G, Cioffi JM: Vectored transmission for digital subscriber line systems. IEEE Journal on Selected Areas in Communications 2002,20(5):1085-1104. 10.1109/JSAC.2002.1007389

    Article  Google Scholar 

  2. 2.

    Comm. T1 Std. T1.417-20011 : Spectrum Management for Loop Transmission Systems. 2001.

    Google Scholar 

  3. 3.

    Song KB, Chung ST, Ginis G, Cioffi JM: Dynamic spectrum management for next-generation DSL systems. IEEE Communications Magazine 2002,40(10):101-109. 10.1109/MCOM.2002.1039864

    Article  Google Scholar 

  4. 4.

    Kerpez KJ, Waring DL, Galli S, Dixon J, Madon PH: Advanced DSL management. IEEE Communications Magazine 2003,41(9):116-123. 10.1109/MCOM.2003.1232246

    Article  Google Scholar 

  5. 5.

    Yu W, Ginis G, Cioffi JM: Distributed multiuser power control for digital subscriber lines. IEEE Journal on Selected Areas in Communications 2002,20(5):1105-1115. 10.1109/JSAC.2002.1007390

    Article  Google Scholar 

  6. 6.

    Starr T, Sorbara M, Cioffi JM, Silverman PJ: DSL Advances. Prentice-Hall, Upper Saddle River, NJ, USA; 2003.

    Google Scholar 

  7. 7.

    Chung S: Transmission schemes for frequency-selective Gaussian interference channels, Ph. D. dissertation. Stanford University, Stanford, Calif, USA; 2003.

    Google Scholar 

  8. 8.

    Luo Z-Q, Pang J-S: Analysis of iterative waterfilling algorithm for multiuser power control in digital subscriber lines. EURASIP Journal on Applied Signal Processing 2006, 2006: 10 pages.

    MATH  Google Scholar 

  9. 9.

    Yamashita N, Luo Z-Q: A nonlinear complementarity approach to multiuser power control for digital subscriber lines. Optimization Methods and Software 2004,19(5):633-652. 10.1080/1055678042000218975

    MathSciNet  Article  Google Scholar 

  10. 10.

    Laufer A, Leshem A, Messer H: Game theoretic aspects of distributed spectral coordination with application to DSL networks. submitted to IEEE Transactions on Information Theory, https://doi.org/www.eng.biu.ac.il/~leshema/ submitted to IEEE Transactions on Information Theory,

  11. 11.

    ANSI Std. T1.413 : Asymmetric Digital Subscriber Line (ADSL) Metallic Interface. 1998.

    Google Scholar 

  12. 12.

    ANSI Std. T1E1.4/2003-210R5 : Very high speed Digital Subscriber Lines (VDSL) Metallic Interface. 2003.

    Google Scholar 

  13. 13.

    Cendrillon R, Yu W, Moonen M, Verlinden J, Bostoen T: Optimal multiuser spectrum balancing for digital subscriber lines. IEEE Transactions on Communications 2006,54(5):922-933.

    Article  Google Scholar 

  14. 14.

    Cendrillon R, Moonen M: Iterative spectrum balancing for digital subscriber lines. Proceedings of IEEE International Conference on Communications (ICC '05), May 2005, Seoul, Korea 3: 1937–1941.

    Google Scholar 

  15. 15.

    Xu Y, Panigrahi S, Le-Ngoc T: A concave minimization approach to dynamic spectrum management for digital subscriber lines. Proceedings of IEEE International Conference on Communications (ICC '06), June 2006, Istanbul, Turkey 1: 84–89.

    Google Scholar 

  16. 16.

    Starr T, Cioffi JM, Silverman PJ: Understanding Digital Subscriber Line Technology. Prentice-Hall, Upper Saddle River, NJ, USA; 1999.

    Google Scholar 

  17. 17.

    ITU Std. G. 997.1 : Physical Layer Management for Digital Subscriber Line (DSL) Transceivers. ITU, 2003

    Google Scholar 

  18. 18.

    ETSI Std. TS 101 270-1 : Transmission and Multiplexing (TM); access transmission systems on metallic access cables; very high speed Digital Subscriber Line (VDSL)—part 1: functional requirements. Rev. V.1.3.1, ETSI, 2003

    Google Scholar 

  19. 19.

    Oksman V, Cioffi JM: Noise models for VDSL performance verification. ANSI - T1E1.4/99-438R2, ANSI, December 1999

    Google Scholar 

  20. 20.

    McCammon K: G. VDSL: VDSL band plan for North America. ITU Contribution D. 715, ITU, 2000

    Google Scholar 

  21. 21.

    Asymmetrical Digital Subscriber Line Transceivers 2 (ADSL2) ITU Std. G.999.2, 2002

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yang Xu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Xu, Y., Le-Ngoc, T. & Panigrahi, S. Selective Iterative Waterfilling for Digital Subscriber Lines. EURASIP J. Adv. Signal Process. 2007, 059068 (2007). https://doi.org/10.1155/2007/59068

Download citation

Keywords

  • Information Technology
  • Quantum Information
  • Digital Subscriber Line