- Research Article
- Open access
- Published:
Fast Discrete Fourier Transform Computations Using the Reduced Adder Graph Technique
EURASIP Journal on Advances in Signal Processing volume 2007, Article number: 067360 (2007)
Abstract
It has recently been shown that thse-dimensional reduced adder graph (RAG-) technique is beneficial for many DSP applications such as for FIR and IIR filters, where multipliers can be grouped in multiplier blocks. This paper highlights the importance of DFT and FFT as DSP objects and also explores how the RAG- technique can be applied to these algorithms. This RAG- DFT will be shown to be of low complexity and possess an attractively regular VLSI data flow when implemented with the Rader DFT algorithm or the Bluestein chirp- algorithm. ASIC synthesis data are provided and demonstrate the low complexity and high speed of the design when compared to other alternatives.
References
Heideman MT, Johnson DH, Burrus CS: Gauss and the history of the fast Fourier transform. IEEE Acoustic Speech & Signal Processing Magazine 1984,1(4):14-21.
Burrus CS: Index mappings for multidimensional formulation of the DFT and convolution. IEEE Transactions on Acoustics, Speech, and Signal Processing 1977,25(3):239-242. 10.1109/TASSP.1977.1162938
Macleod MD: Multiplierless implementation of rotators and FFTs. EURASIP Journal on Applied Signal Processing 2005,2005(17):2903-2910. 10.1155/ASP.2005.2903
Altera Corporation : FFT: MegaCore Function User Guide. Ver. 2.1.3, 2004
Xilinx Corporation : Fast Fourier Transform. LogiCore v3.1, November 2004
Baas B: SPIFFEE: an energy-efficient single-chip 1024-point FFT processor. 1998.https://doi.org/nova.stanford.edu/~bbaas/fftinfo.html
Sunada G, Jin J, Berzins M, Chen T: COBRA: an 1.2 million transistor expandable column FFT chip. Proceedings of IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD '94), October 1994, Cambridge, Mass, USA 546–550.
Texas Memory Systems : TM-66 swifft chip. 1996.https://doi.org/www.texmemsys.com
SHARP Microeletronics : Bdsp9124 digital signal processor. 1997.https://doi.org/www.butterflydsp.com
Lavoie P: A high-speed CMOS implementation of the Winograd Fourier transform algorithm. IEEE Transactions on Signal Processing 1996,44(8):2121-2126. 10.1109/78.533738
Panneerselvam G, Graumann P, Turner L: Implementation of fast Fourier transforms and discrete cosine transforms in FPGAs. Proceedings of the 5th International Workshop on Field-Programmable Logic and Applications (FPL '95), August-September 1995, Oxford, UK, Lecture Notes in Computer Science 975: 272–281.
Goslin G: Using Xilinx FPGAs to design custom digital signal processing devices. Proceedings of the DSPX, January 1995 565–604.
Shirazi N, Athanas PM, Abbott AL: Implementation of a 2-D fast Fourier transform on an FPGA-based custom computing machine. Proceedings of the 5th International Workshop on Field-Programmable Logic and Applications (FPL '95), August-September 1995, Oxford, UK, Lecture Notes in Computer Science 975: 282–292.
Dick C: Computing 2-D DFTs using FPGAs. Proceedings of the 6th International Workshop on Field-Programmable Logic, Smart Applications, New Paradigms and Compilers (FPL '96), September 1996, Darmstadt, Germany, Lecture Notes in Computer Science 1142: 96–105.
Bull DR, Horrocks DH: Reduced-complexity digital filtering structures using primitive operations. Electronics Letters 1987,23(15):769-771. 10.1049/el:19870546
Bull DR, Horrocks DH: Primitive operator digital filters. IEE Proceedings G: Circuits, Devices and Systems 1991,138(3):401-412. 10.1049/ip-g-2.1991.0066
Dempster AG, Macleod MD: Constant integer multiplication using minimum adders. IEE Proceedings: Circuits, Devices and Systems 1994,141(5):407-413. 10.1049/ip-cds:19941191
Dempster AG, Macleod MD: Comments on "Minimum number of adders for implementing a multiplier and its application to the design of multiplierless digital filters". IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 1998,45(2):242-243. 10.1109/82.661661
Gustafsson O, Dempster AG, Wanhammar L: Extended results for minimum-adder constant integer multipliers. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '02), May 2002, Phoenix, Ariz, USA 1: 73–76.
Dempster AG, Macleod MD: Use of minimum-adder multiplier blocks in FIR digital filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 1995,42(9):569-577. 10.1109/82.466647
Hartley RT: Subexpression sharing in filters using canonic signed digit multipliers. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 1996,43(10):677-688. 10.1109/82.539000
Macleod MD, Dempster AG: Multiplierless FIR filter design algorithms. IEEE Signal Processing Letters 2005,12(3):186-189.
Stearns SD, Hush DR: Digital Signal Analysis. Prentice-Hall, Englewood Cliffs, NJ, USA; 1990.
Oppenheim AV, Schafer RW: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, USA; 1992.
Brigham E: FFT. 3rd edition. Oldenbourg, München, Germany; 1987.
Ramirez R: The FFT: Fundamentals and Concepts. Prentice-Hall, Englewood Cliffs, NJ, USA; 1985.
Burrus C, Parks T: DFT/FFT and Convolution Algorithms. John Wiley & Sons, New York, NY, USA; 1985.
Elliott D, Rao K: Fast Transforms Algorithms, Analyses, Applications. Academic Press, New York, NY, USA; 1982.
Nussbaumer H: Fast Fourier Transform and Convolution Algorithms. Springer, Heidelberg, Germany; 1990.
Rader C: Discrete Fourier transform when the number of data samples is prime. Proceedings of the IEEE 1968,56(6):1107-1108.
McClellan J, Rader C: Number Theory in Digital Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, USA; 1979.
Narasimha M, Shenoi K, Peterson A: Quadratic residues: application to chirp filters and discrete Fourier transforms. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '76), April 1976, Philadelphia, Pa, USA 1: 376–378.
Meyer-Bäse U, Sunkara D, Castillo E, Garcia A: Custom instruction set NIOS-based OFDM processor for FPGAs. Wireless Sensing and Processing, April 2006, Kissimmee, Fla, USA, Proceedings of SPIE 6248: article number 62480O
Macleod MD, Dempster AG: Common subexpression elimination algorithm for low-cost multiplierless implementation of matrix multipliers. Electronics Letters 2004,40(11):651-652. 10.1049/el:20040436
Gorman SF, Wills JM: Partial column FFT pipelines. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 1995,42(6):414-423. 10.1109/82.392316
Gustafsson O, Dempster AG, Wanhammar L: Multiplier blocks using carry-save adders. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '04), May 2004, Vancouver, BC, Canada 2: 473–476.
White SA: Applications of distributed arithmetic to digital signal processing: a tutorial review. IEEE Transactions on Acoustics, Speech and Signal Processing Magazine 1989,6(3):4-19.
Soderstrand M, Jenkins W, Jullien G, Taylor F: Residue Number System Arithmetic: Modern Applications in Digital Signal Processing, IEEE Press Reprint Series. IEEE Press, New York, NY, USA; 1986.
Voronenko Y, Püschel M: Multiplierless multiple constant multiplication. to appear in ACM Transactions on Algorithms
Gustafsson O: A difference based adder graph heuristic for multiple constant multiplication problems. Proceedings Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '07), May 2007, New Orleans, La, USA submitted
Welch P: A fixed-point fast Fourier transform error analysis. IEEE Transactions on Audio and Electroacoustics 1969,17(2):151-157. 10.1109/TAU.1969.1162035
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Meyer-Bäse, U., Natarajan, H. & Dempster, A.G. Fast Discrete Fourier Transform Computations Using the Reduced Adder Graph Technique. EURASIP J. Adv. Signal Process. 2007, 067360 (2007). https://doi.org/10.1155/2007/67360
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/67360