Skip to main content

On the Perceptual Organization of Image Databases Using Cognitive Discriminative Biplots

Abstract

A human-centered approach to image database organization is presented in this study. The management of a generic image database is pursued using a standard psychophysical experimental procedure followed by a well-suited data analysis methodology that is based on simple geometrical concepts. The end result is a cognitive discriminative biplot, which is a visualization of the intrinsic organization of the image database best reflecting the user's perception. The discriminating power of the introduced cognitive biplot constitutes an appealing tool for image retrieval and a flexible interface for visual data mining tasks. These ideas were evaluated in two ways. First, the separability of semantically distinct image classes was measured according to their reduced representations on the biplot. Then, a nearest-neighbor retrieval scheme was run on the emerged low-dimensional terrain to measure the suitability of the biplot for performing content-based image retrieval (CBIR). The achieved organization performance when compared with the performance of a contemporary system was found superior. This promoted the further discussion of packing these ideas into a realizable algorithmic procedure for an efficient and effective personalized CBIR system.

References

  1. 1.

    Rui Y, Huang TS, Ortega M, Mehrotra S: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Transactions on Circuits and Systems for Video Technology 1998,8(5):644–655. 10.1109/76.718510

    Article  Google Scholar 

  2. 2.

    Su Z, Zhang H, Li S, Ma S: Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning. IEEE Transactions on Image Processing 2003,12(8):924–937. 10.1109/TIP.2003.815254

    Article  Google Scholar 

  3. 3.

    Chang E, Tong S: SVMActive - support vector machine active learning for image retrieval. In UCSB Technical Report. University of California, Santa Barbara, Santa Barbara, Calif, USA; 2001.

    Google Scholar 

  4. 4.

    Smeulders AWM, Worring M, Santini S, Gupta A, Jain R: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000,22(12):1349–1380. 10.1109/34.895972

    Article  Google Scholar 

  5. 5.

    Rogowitz BE, Frese T, Smith JR, Bouman CA, Kalin EB: Perceptual image similarity experiments. Human Vision and Electronic Imaging III, January 1998, San Jose, Calif, USA, Proceedings of SPIE 3299: 576–590.

    Article  Google Scholar 

  6. 6.

    Cox IJ, Miller ML, Minka TP, Papathomas TV, Yianilos PN: The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments. IEEE Transactions on Image Processing 2000,9(1):20–37. 10.1109/83.817596

    Article  Google Scholar 

  7. 7.

    Wang JZ, Li J, Wiederhold G: SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001,23(9):947–963. 10.1109/34.955109

    Article  Google Scholar 

  8. 8.

    Mojsilović A, Gomes J, Rogowitz B: Semantic-friendly indexing and quering of images based on the extraction of the objective semantic cues. International Journal of Computer Vision 2004,56(1-2):79–107.

    Article  Google Scholar 

  9. 9.

    Bertin J: Semiology of Graphics. University of Wisconsin Press, Madison, Wis, USA; 1983.

    Google Scholar 

  10. 10.

    Ullman S: High-Level Vision: Object Recognition and Visual Cognition. MIT Press, Cambridge, Mass, USA; 1996.

    Google Scholar 

  11. 11.

    Edelman S: Representation and Recognition in Vision. MIT Press, Cambridge, Mass, USA; 1999.

    Google Scholar 

  12. 12.

    Seung HS, Lee DD: The manifold ways of perception. Science 2000,290(5500):2268–2269. 10.1126/science.290.5500.2268

    Article  Google Scholar 

  13. 13.

    Rolls ET, Deco G: Computational Neuroscience of Vision. Oxford University Press, New York, NY, USA; 2002.

    Google Scholar 

  14. 14.

    Chalupa LM, Werner JS: The Visual Neuroscience. MIT Press, Cambridge, Mass, USA; 2004.

    Google Scholar 

  15. 15.

    Edelman S: Representation is representation of similarities. Behavioral and Brain Sciences 1998,21(4):449–498.

    Google Scholar 

  16. 16.

    Duvdevani-Bar S, Edelman S: Visual recognition and categorization on the basis of similarities to multiple class prototypes. International Journal of Computer Vision 1999,33(3):201–228. 10.1023/A:1008102413960

    Article  Google Scholar 

  17. 17.

    Gower JC, Hand DJ: Biplots. Chapman & Hall, London, UK; 1996.

    Google Scholar 

  18. 18.

    Kruskal JB, Wish M: Multidimensional Scaling. Sage, Beverly Hills, Calif, USA; 1978.

    Google Scholar 

  19. 19.

    Astola J, Haavisto P, Neuvo Y: Vector median filters. Proceedings of the IEEE 1990,78(4):678–689. 10.1109/5.54807

    Article  Google Scholar 

  20. 20.

    Theoharatos C, Laskaris NA, Economou G, Fotopoulos S: A generic scheme for color image retrieval based on the multivariate Wald-Wolfowitz test. IEEE Transactions on Knowledge and Data Engineering 2005,17(6):808–819.

    Article  Google Scholar 

  21. 21.

    Gower JC: Adding a point to vector diagrams in multivariate analysis. Biometrika 1968,55(3):582–585. 10.1093/biomet/55.3.582

    MathSciNet  Article  Google Scholar 

  22. 22.

    Friedman JH, Rafsky LC: Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. Annals of Statistics 1979,7(4):697–717. 10.1214/aos/1176344722

    MathSciNet  Article  Google Scholar 

  23. 23.

    Theoharatos C, Laskaris NA, Economou G, Fotopoulos S: Combining self-organizing neural nets with multivariate statistics for efficient color image retrieval. Computer Vision and Image Understanding 2006,102(3):250–258. 10.1016/j.cviu.2006.02.008

    Article  Google Scholar 

  24. 24.

    Tversky A: Features of similarity. Psychological Review 1977,84(4):327–352.

    Article  Google Scholar 

  25. 25.

    Mezaris V, Doulaverakis H, Medina Beltran de Otalora R, Herrmann S, Kompatsiaris I, Strintzis MG: A test-bed for region-based image retrieval using multiple segmentation algorithms and the MPEG-7 eXperimentation model: the schema reference system. Proceedings of the 3rd International Conference on Image and Video Retrieval (CIVR '04), July 2004, Dublin, Ireland 592–600.

    Google Scholar 

  26. 26.

    Laskaris NA, Ioannides AA: Semantic geodesic maps: a unifying geometrical approach for studying the structure and dynamics of single trial evoked responses. Clinical Neurophysiology 2002,113(8):1209–1226. 10.1016/S1388-2457(02)00124-4

    Article  Google Scholar 

  27. 27.

    Zahn CT: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers 1971,20(1):68–86.

    Article  Google Scholar 

  28. 28.

    Prim RC: Shortest connection networks and some generalizations. Bell Systems Technology Journal 1957, 36: 1389–1401.

    Article  Google Scholar 

  29. 29.

    Castelli V, Bergman LD: Image Databases: Search and Retrieval of Digital Imagery. John Wiley & Sons, New York, NY, USA; 2002.

    Google Scholar 

  30. 30.

    Swain MJ, Ballard DH: Color indexing. International Journal of Computer Vision 1991,7(1):11–32. 10.1007/BF00130487

    Article  Google Scholar 

  31. 31.

    Natsev A, Smith JR: A study of image retrieval by anchoring. Proceedings of IEEE International Conference on Multimedia and Expo (ICME '02), August 2002, Lausanne, Switzerland 2: 421–424.

    Article  Google Scholar 

  32. 32.

    Le Borgne H, Guyader N, Guérin-Dugué A, Herault J: Classification of images: ICA filters vs human perception. Proceedings of 7th International Symposium on Signal Processing and Its Applications (ISSPA '03), July 2003, Paris, France 2: 251–254.

    Google Scholar 

  33. 33.

    Laub J, Müller K-R: Feature discovery in non-metric pairwise data. Journal of Machine Learning Research 2004, 5: 801–818.

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Laub J, Roth V, Buhmann JM, Müller K-R: On the information and representation of non-Euclidean pairwise data. Pattern Recognition 2006,39(10):1815–1826. 10.1016/j.patcog.2006.04.016

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christos Theoharatos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Theoharatos, C., Laskaris, N.A., Economou, G. et al. On the Perceptual Organization of Image Databases Using Cognitive Discriminative Biplots. EURASIP J. Adv. Signal Process. 2007, 068165 (2006). https://doi.org/10.1155/2007/68165

Download citation

Keywords

  • Image Retrieval
  • Image Database
  • Perceptual Organization
  • Retrieval Scheme
  • Geometrical Concept