Skip to main content

Subspace-Based Algorithms for Structural Identification, Damage Detection, and Sensor Data Fusion

Abstract

This paper reports on the theory and practice of covariance-driven output-only and input/output subspace-based identification and detection algorithms. The motivating and investigated application domain is vibration-based structural analysis and health monitoring of mechanical, civil, and aeronautic structures.

References

  1. 1.

    Balageas D, Fritzen C-P, Güemes A (Eds): Structural Health Monitoring. Lavoisier, Paris, France; 2006.

    Google Scholar 

  2. 2.

    Doebling SW, Farrar CR, Prime MB: A summary review of vibration-based damage identification methods. The Shock and Vibration Digest 1998,30(2):91–105. 10.1177/058310249803000201

    Article  Google Scholar 

  3. 3.

    Farrar CR, Doebling SW, Nix DA: Vibration-based structural damage identification. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2001,359(1778):131–149. 10.1098/rsta.2000.0717

    MATH  Article  Google Scholar 

  4. 4.

    Maeck J: Damage assessment of civil engineering structures by vibration monitoring, Ph.D. thesis. Department of Civil Engineering, Katholieke Universiteit Leuven, Leuven, Belgium; 2003. March

    Google Scholar 

  5. 5.

    Zimmerman DC, Kaouk M, Simmermacher T: Structural health monitoring using vibration measurements and engineering insight. Journal of Mechanical Design, Transactions of the ASME 1995, 117 B: 214–221.

    Article  Google Scholar 

  6. 6.

    Basseville M, Benveniste A, Goursat M, Hermans L, Mevel L, van der Auweraer H: Output-only subspace-based structural identification: from theory to industrial testing practice. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 2001,123(4):668–676. special issue on identfication of mechanical systems 10.1115/1.1410919

    Article  Google Scholar 

  7. 7.

    Peeters B, De Roeck G: Stochastic system identification for operational modal analysis: a review. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 2001,123(4):659–667. special issue on identification of mechanical systems 10.1115/1.1410370

    Article  Google Scholar 

  8. 8.

    Ewins DJ: Modal Testing: Theory, Practice and Applications. 2nd edition. Research Studies Press, Letchworth, Hertfordshire, UK; 2000.

    Google Scholar 

  9. 9.

    Heylen W, Lammens S, Sas P: Modal Analysis Theory and Testing. Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium; 1995.

    Google Scholar 

  10. 10.

    Juang JN: Applied System Identification. Prentice Hall, Englewood Cliffs, NJ, USA; 1994.

    Google Scholar 

  11. 11.

    Peeters B, De Roeck G: Reference-based stochastic subspace identification for output-only modal analysis. Mechanical Systems and Signal Processing 1999,13(6):855–878. 10.1006/mssp.1999.1249

    Article  Google Scholar 

  12. 12.

    Van Overschee P, De Moor B: Subspace Identification for Linear Systems. Kluwer Academic, Boston, Mass, USA; 1996.

    Google Scholar 

  13. 13.

    Viberg M: Subspace-based methods for the identification of linear time-invariant systems. Automatica 1995,31(12):1835–1853. 10.1016/0005-1098(95)00107-5

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Viberg M, Ottersten B: Sensor array processing based on subspace fitting. IEEE Transactions on Signal Processing 1991,39(5):1110–1121. 10.1109/78.80966

    MATH  Article  Google Scholar 

  15. 15.

    Viberg M, Wahlberg B, Ottersten B: Analysis of state space system identification methods based on instrumental variables and subspace fitting. Automatica 1997,33(9):1603–1616. 10.1016/S0005-1098(97)00097-6

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Ottersten B, Viberg M, Kailath T: Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data. IEEE Transactions on Signal Processing 1992,40(3):590-600. 10.1109/78.120802

    MATH  Article  Google Scholar 

  17. 17.

    Cardoso J-F, Moulines É: Invariance of subspace based estimators. IEEE Transactions on Signal Processing 2000,48(9):2495–2505. 10.1109/78.863052

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Stoïca P, Moses RL: Introduction to Spectral Analysis. Prentice Hall, Upper Saddle River, NJ, USA; 1997.

    Google Scholar 

  19. 19.

    Akaïke H: Stochastic theory of minimal realization. IEEE Transactions on Automatic Control 1974,19(6):667–674. 10.1109/TAC.1974.1100707

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Mevel L, Basseville M, Benveniste A, Goursat M: Merging sensor data from multiple measurement set-ups for non-stationary subspace-based modal analysis. Journal of Sound and Vibration 2002,249(4):719–741. 10.1006/jsvi.2001.3880

    Article  Google Scholar 

  21. 21.

    Akaïke H: Markovian representation of stochastic processes by canonical variables. SIAM Journal on Control and Optimization 1975,13(1):162–173. 10.1137/0313010

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Basseville M, Abdelghani M, Benveniste A: Subspace-based fault detection algorithms for vibration monitoring. Automatica 2000,36(1):101–109. 10.1016/S0005-1098(99)00093-X

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Godambe VP (Ed): Estimating Functions. Clarendon Press, Oxford, UK; 1991.

    Google Scholar 

  24. 24.

    Heyde CC: Quasi-Likelihood and Its Application, Series in Statistics. Springer, New York, NY, USA; 1997.

    Google Scholar 

  25. 25.

    Benveniste A, Métivier M, Priouret P: Adaptive Algorithms and Stochastic Approximations, Applications of Mathematics. Volume 22. Springer, New York, NY, USA; 1990.

    Google Scholar 

  26. 26.

    Mc Leish DL, Small CG: The Theory and Application of Statistical Inference Functions, Lecture Notes in Statistics. Volume 44. Springer, Berlin, Germany; 1988.

    Google Scholar 

  27. 27.

    Mevel L, Benveniste A, Basseville M, et al.: Input/output versus output-only data processing for structural identification—application to in-flight data analysis. Journal of Sound and Vibration 2006,295(3):531–552. 10.1016/j.jsv.2006.01.039

    Article  Google Scholar 

  28. 28.

    Benveniste A, Fuchs J-J: Single sample modal identfication of a non-stationary stochastic process. IEEE Transactions on Automatic Control 1985,30(1):66–74. 10.1109/TAC.1985.1103787

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Benveniste A, Mevel L: Nonstationary consistency of subspace methods. In Research Report 1752. IRISA, Rennes, France; 2005. https://doi.org/hal.inria.fr/inria-00000869

    Google Scholar 

  30. 30.

    Benveniste A, Mevel L: Nonstationary consistency of subspace methods. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC '05), December 2005, Seville, Spain. IEEE & EUCA; 7096–7101.

    Google Scholar 

  31. 31.

    Mevel L, Benveniste A, Basseville M, Goursat M: Blind subspace-based eigenstructure identification under nonstationary excitation using moving sensors. IEEE Transactions on Signal Processing 2002,50(1):41–48. 10.1109/78.972480

    Article  Google Scholar 

  32. 32.

    Jategaonkar R, Fischenberg D, von Gruenhagen W: Aerodynamic modeling and system identification from flight data—recent applications at DLR. AIAA Journal of Aircraft 2004,41(4):681–691. 10.2514/1.3165

    Article  Google Scholar 

  33. 33.

    Cauberghe B, Guillaume P, Pintelon R, Verboven P: Frequency-domain subspace identification using FRF data from arbitrary signals. Journal of Sound and Vibration 2006,290(3–5):555–571.

    Article  Google Scholar 

  34. 34.

    McKelvey T, Akcay H, Ljung L: Subspace-based multivariable system identification from frequency response data. IEEE Transactions on Automatic Control 1996,41(7):960–979. 10.1109/9.508900

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Vold H, Kundrat J, Rocklin T, Russel R: A multi-input modal parameter estimation algorithm for mini-computers. SAE Transaction 1982,91(1):815–821. SAE paper 820194

    Google Scholar 

  36. 36.

    Devauchelle B, Basseville M, Benveniste A: Diagnosing mechanical changes in vibrating systems. In Proceedings of the 1st Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS '91), September 1991, Baden-Baden, FRG, Germany. IFAC /IMACS; 159–164.

    Google Scholar 

  37. 37.

    Moustakides G: The problem of diagnosis with respect to physical parameters for changes in structures. In Research Report 295. IRISA, Rennes, France; 1986.

    Google Scholar 

  38. 38.

    Moustakides G, Basseville M, Benveniste A, Vey GL: Diagnosing mechanical changes in vibrating systems. In Research Report 436. IRISA, Rennes, France; 1988.

    Google Scholar 

  39. 39.

    Basseville M, Mevel L, Goursat M: Statistical model-based damage detection and localization: subspace-based residuals and damage-to-noise sensitivity ratios. Journal of Sound and Vibration 2004,275(3–5):769–794.

    Article  Google Scholar 

  40. 40.

    Basawa I: Neyman-Le Cam tests based on estimating functions. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer. Volume 2. Edited by: Le Cam L, Olshen R. Wadsworth, Belmont, Calif, USA; 1985:811–825.

    Google Scholar 

  41. 41.

    Basawa I, Godambe VP, Taylor R (Eds): Selected proceedings of the Symposium on Estimating Functions. Institute of Mathematical Statistics, Hayward, Calif, USA; 1997.

    Google Scholar 

  42. 42.

    Hall W, Mathiason D: On large sample estimation and testing in parametric models. International Statistical Review 1990,58(1):77–97. 10.2307/1403475

    MATH  Article  Google Scholar 

  43. 43.

    Basseville M: On-board component fault detection and isolation using the statistical local approach. Automatica 1998,34(11):1391–1415. 10.1016/S0005-1098(98)00086-7

    MATH  Article  Google Scholar 

  44. 44.

    Basseville M, Nikiforov IV: Detection of Abrupt Changes—Theory and Applications, Information and System Sciences Series. Prentice-Hall, Englewood Cliffs, NJ, USA; 1993.

    Google Scholar 

  45. 45.

    Mevel L, Basseville M, Benveniste A: Fast in-flight detection of flutter onset: a statistical approach. AIAA Journal of Guidance, Control, and Dynamics 2005,28(3):431–438. 10.2514/1.6184

    Article  Google Scholar 

  46. 46.

    Benveniste A, Basseville M, Moustakides GV: The asymptotic local approach to change detection and model validation. IEEE Transactions on Automatic Control 1987,32(7):583–592. 10.1109/TAC.1987.1104683

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Delyon B, Juditsky A, Benveniste A: On the relationship between identfication and local tests. In Research Report 1104. IRISA, Rennes, France; 1997. https://doi.org/www.irisa.fr/bibli/publi/pi/1997/1104/1104.html

    Google Scholar 

  48. 48.

    Zhang Q, Basseville M, Benveniste A: Early warning of slight changes in systems. Automatica 1994,30(1):95–113. 10.1016/0005-1098(94)90231-3

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Zhang Q, Basseville M:Advanced numerical computation of -tests for fault detection and isolation. In Proceedings of the 5th Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS '03), June 2003, Washington, DC, USA. IFAC /IMACS; 211–216.

    Google Scholar 

  50. 50.

    Moustakides G, Benveniste A: Detecting changes in the AR parameters of a nonstationary ARMA process. Stochastics 1986, 16: 137–155. 10.1080/17442508608833370

    MathSciNet  MATH  Article  Google Scholar 

  51. 51.

    Basseville M, Benveniste A, Moustakides G, Rougée A: Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems. Automatica 1987,23(4):479–489. 10.1016/0005-1098(87)90077-X

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Mevel L, Goursat M, Basseville M: Stochastic subspace-based structural identification and damage detection and localisation—application to the Z24 bridge benchmark. Mechanical Systems and Signal Processing 2003,17(1):143–151. 10.1006/mssp.2002.1552

    Article  Google Scholar 

  53. 53.

    Basseville M: An invariance property of some subspace-based detection algorithms. IEEE Transactions on Signal Processing 1999,47(12):3398–3400. 10.1109/78.806083

    MATH  Article  Google Scholar 

  54. 54.

    Rougée A, Basseville M, Benveniste A, Moustakides G: Optimum robust detection of changes in the AR part of a multivariable ARMA process. IEEE Transactions on Automatic Control 1987,32(12):1116–1120. 10.1109/TAC.1987.1104500

    MATH  Article  Google Scholar 

  55. 55.

    Ladelli L: Diffusion approximation for a pseudo-likelihood test process with application to detection of change in a stochastic system. Stochastics and Stochastics Reports 1990,32(1):1–25.

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Ljung L: System Identification—Theory for the User. 2nd edition. PTR Prentice Hall, Upper Saddle River, NJ, USA; 1999.

    Google Scholar 

  57. 57.

    Basseville M, Benveniste A, Mevel L: Handling uncertainties in identification and model validation: a statistical approach. In Proceedings of the 24th International Modal Analysis Conference (IMAC '06), January 2006, Saint Louis, Mich, USA. SEM; tutorial paper

    Google Scholar 

  58. 58.

    Mevel L, Goursat M: Model validation by using a damage detection test. In Proceedings of the 24th International Modal Analysis Conference (IMAC '06), January 2006, Saint Louis, Mich, USA. SEM;

    Google Scholar 

  59. 59.

    Gersch W: On the achievable accuracy of structural parameter estimates. Journal of Sound and Vibration 1974,34(1):63–79. 10.1016/S0022-460X(74)80355-X

    MATH  Article  Google Scholar 

  60. 60.

    Basseville M, Goursat M, Mevel L: Multiple CUSUM tests for flutter monitoring. In Proceedings of the 14th Symposium on System Identfication (SYSID '06), March 2006, Newcastle, Australia. IFAC /IFORS; 624–629.

    Google Scholar 

  61. 61.

    Goethals I, Mevel L, Benveniste A, de Moor B: Recursive output-only subspace identification for in-flight flutter monitoring. In Proceedings of the 22nd International Modal Analysis Conference (IMAC '04), January 2004, Dearborn, Mich, USA. SEM;

    Google Scholar 

  62. 62.

    Mevel L, Coursat M, Basseville M, Benveniste A: On-line monitoring of slow to fast evolving aeronautic structures. Proceedings of the International Conference on Noise and Vibration Engineering (ISMA '04), September 2004, Leuven, Belgium 1033–1047.

    Google Scholar 

  63. 63.

    Basseville M, Benveniste A, Gach-Devauchelle B, et al.: In situ damage monitoring in vibration mechanics: diagnostics and predictive maintenance. Mechanical Systems and Signal Processing 1993,7(5):401–423. 10.1006/mssp.1993.1023

    Article  Google Scholar 

  64. 64.

    Basseville M, Mevel L, Vecchio A, Peeters B, van der Auweraer H: Output-only subspace-based damage detection—application to a reticular structure. Structural Health Monitoring 2003,2(2):161–168. 10.1177/1475921703002002008

    Article  Google Scholar 

  65. 65.

    Goursat M, Mevel L: On-line monitoring of bradford stadium. In Proceedings of the 23rd International Modal Analysis Conference (IMAC '05), January 2005, Orlando, Fla, USA. SEM;

    Google Scholar 

  66. 66.

    Goursat M, Mevel L: On-line monitoring of the crowd influence on manchester stadium. In Proceedings of the 24th International Modal Analysis Conference (IMAC '06), January 2006, Saint Louis, Mich, USA. SEM;

    Google Scholar 

  67. 67.

    Mevel L, Basseville M, Goursat M: Stochastic subspace-based structural identification and damage detection—application to the steel-quake benchmark. Mechanical Systems and Signal Processing 2003,17(1):91–101. 10.1006/mssp.2002.1544

    Article  Google Scholar 

  68. 68.

    Mevel L, Hermans L, van der Auweraer H: On the application of a subspace-based fault detection method to industrial structures. Mechanical Systems and Signal Processing 1999,13(6):823–838. 10.1006/mssp.1999.1247

    Article  Google Scholar 

  69. 69.

    Peeters B, Mevel L, Vanlanduit S, et al.: Online vibration-based crack detection during fatigue testing. Key Engineering Materials 2003,245(2):571–578.

    Article  Google Scholar 

  70. 70.

    Mevel L, Goursat M, Basseville M, Benveniste A: Subspace-based modal identification and monitoring of large structures, a Scilab toolbox. In Proceedings of the 13th Symposium on System identification (SYSID '03), August 2003, Rotterdam, The Netherlands. IFAC /IFORS; 1405–1410. https://doi.org/www.irisa.fr/sisthem/cosmad/

    Google Scholar 

  71. 71.

    Brenner M, Lind R, Voracek D: Overview of recent flight flutter testing research at NASA Dryden. In Technical Memorandum NASA TM-4792. NASA Dryden, Edwards, Calif, USA; 1997.

    Google Scholar 

  72. 72.

    Pickrel C, White P: Flight flutter testing of transport aircraft: in-flight modal analysis. In Proceedings of the 21st International Modal Analysis Conference (IMAC '03), February 2003, Kissimmee, Fla, USA. SEM;

    Google Scholar 

  73. 73.

    Lind R: Flight testing with the flutterometer. Journal of Aircraft 2003,40(3):574–579. 10.2514/2.3132

    Article  Google Scholar 

  74. 74.

    Peeters B, Maeck J, De Roeck G: Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart Materials and Structures 2001,10(3):518–527. 10.1088/0964-1726/10/3/314

    Article  Google Scholar 

  75. 75.

    Basseville M: Information criteria for residual generation and fault detection and isolation. Automatica 1997,33(5):783–803. 10.1016/S0005-1098(97)00004-6

    MathSciNet  MATH  Article  Google Scholar 

  76. 76.

    Basseville M, Nikiforov IV: Fault isolation for diagnosis: nuisance rejection and multiple hypothesis testing. Annual Reviews in Control 2002,26(2):189–202. 10.1016/S1367-5788(02)00029-9

    Article  Google Scholar 

  77. 77.

    Basseville M, Nikiforov IV: Handling nuisance parameters in systems monitoring. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC '05), December 2005, Seville, Spain. IEEE & EUCA; 3832–3837.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michèle Basseville.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Basseville, M., Benveniste, A., Goursat, M. et al. Subspace-Based Algorithms for Structural Identification, Damage Detection, and Sensor Data Fusion. EURASIP J. Adv. Signal Process. 2007, 069136 (2006). https://doi.org/10.1155/2007/69136

Download citation

Keywords

  • Information Technology
  • Structural Analysis
  • Quantum Information
  • Detection Algorithm
  • Structural Identification