Skip to content

Advertisement

  • Research Article
  • Open Access

Subspace-Based Algorithms for Structural Identification, Damage Detection, and Sensor Data Fusion

  • Michèle Basseville1, 2Email author,
  • Albert Benveniste1, 3,
  • Maurice Goursat4 and
  • Laurent Mevel1, 3
EURASIP Journal on Advances in Signal Processing20062007:069136

https://doi.org/10.1155/2007/69136

Received: 2 February 2006

Accepted: 27 May 2006

Published: 16 October 2006

Abstract

This paper reports on the theory and practice of covariance-driven output-only and input/output subspace-based identification and detection algorithms. The motivating and investigated application domain is vibration-based structural analysis and health monitoring of mechanical, civil, and aeronautic structures.

Keywords

Information TechnologyStructural AnalysisQuantum InformationDetection AlgorithmStructural Identification

[1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677]

Authors’ Affiliations

(1)
IRISA, Campus Universitaire de Beaulieu, Rennes Cedex, France
(2)
CNRS, Campus Universitaire de Beaulieu, Rennes Cedex, France
(3)
INRIA, Campus Universitaire de Beaulieu, Rennes Cedex, France
(4)
INRIA, Domaine de Voluceau Rocquencourt, Le Chesnay Cedex, France

References

  1. Balageas D, Fritzen C-P, Güemes A (Eds): Structural Health Monitoring. Lavoisier, Paris, France; 2006.Google Scholar
  2. Doebling SW, Farrar CR, Prime MB: A summary review of vibration-based damage identification methods. The Shock and Vibration Digest 1998,30(2):91-105. 10.1177/058310249803000201View ArticleGoogle Scholar
  3. Farrar CR, Doebling SW, Nix DA: Vibration-based structural damage identification. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2001,359(1778):131-149. 10.1098/rsta.2000.0717View ArticleMATHGoogle Scholar
  4. Maeck J: Damage assessment of civil engineering structures by vibration monitoring, Ph.D. thesis. Department of Civil Engineering, Katholieke Universiteit Leuven, Leuven, Belgium; 2003. MarchGoogle Scholar
  5. Zimmerman DC, Kaouk M, Simmermacher T: Structural health monitoring using vibration measurements and engineering insight. Journal of Mechanical Design, Transactions of the ASME 1995, 117 B: 214-221.View ArticleGoogle Scholar
  6. Basseville M, Benveniste A, Goursat M, Hermans L, Mevel L, van der Auweraer H: Output-only subspace-based structural identification: from theory to industrial testing practice. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 2001,123(4):668-676. special issue on identfication of mechanical systems 10.1115/1.1410919View ArticleGoogle Scholar
  7. Peeters B, De Roeck G: Stochastic system identification for operational modal analysis: a review. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 2001,123(4):659-667. special issue on identification of mechanical systems 10.1115/1.1410370View ArticleGoogle Scholar
  8. Ewins DJ: Modal Testing: Theory, Practice and Applications. 2nd edition. Research Studies Press, Letchworth, Hertfordshire, UK; 2000.Google Scholar
  9. Heylen W, Lammens S, Sas P: Modal Analysis Theory and Testing. Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium; 1995.Google Scholar
  10. Juang JN: Applied System Identification. Prentice Hall, Englewood Cliffs, NJ, USA; 1994.MATHGoogle Scholar
  11. Peeters B, De Roeck G: Reference-based stochastic subspace identification for output-only modal analysis. Mechanical Systems and Signal Processing 1999,13(6):855-878. 10.1006/mssp.1999.1249View ArticleGoogle Scholar
  12. Van Overschee P, De Moor B: Subspace Identification for Linear Systems. Kluwer Academic, Boston, Mass, USA; 1996.View ArticleMATHGoogle Scholar
  13. Viberg M: Subspace-based methods for the identification of linear time-invariant systems. Automatica 1995,31(12):1835-1853. 10.1016/0005-1098(95)00107-5MathSciNetView ArticleMATHGoogle Scholar
  14. Viberg M, Ottersten B: Sensor array processing based on subspace fitting. IEEE Transactions on Signal Processing 1991,39(5):1110-1121. 10.1109/78.80966View ArticleMATHGoogle Scholar
  15. Viberg M, Wahlberg B, Ottersten B: Analysis of state space system identification methods based on instrumental variables and subspace fitting. Automatica 1997,33(9):1603-1616. 10.1016/S0005-1098(97)00097-6MathSciNetView ArticleGoogle Scholar
  16. Ottersten B, Viberg M, Kailath T: Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data. IEEE Transactions on Signal Processing 1992,40(3):590-600. 10.1109/78.120802View ArticleMATHGoogle Scholar
  17. Cardoso J-F, Moulines É: Invariance of subspace based estimators. IEEE Transactions on Signal Processing 2000,48(9):2495-2505. 10.1109/78.863052MathSciNetView ArticleMATHGoogle Scholar
  18. Stoïca P, Moses RL: Introduction to Spectral Analysis. Prentice Hall, Upper Saddle River, NJ, USA; 1997.MATHGoogle Scholar
  19. Akaïke H: Stochastic theory of minimal realization. IEEE Transactions on Automatic Control 1974,19(6):667-674. 10.1109/TAC.1974.1100707View ArticleMathSciNetMATHGoogle Scholar
  20. Mevel L, Basseville M, Benveniste A, Goursat M: Merging sensor data from multiple measurement set-ups for non-stationary subspace-based modal analysis. Journal of Sound and Vibration 2002,249(4):719-741. 10.1006/jsvi.2001.3880View ArticleGoogle Scholar
  21. Akaïke H: Markovian representation of stochastic processes by canonical variables. SIAM Journal on Control and Optimization 1975,13(1):162-173. 10.1137/0313010MathSciNetView ArticleMATHGoogle Scholar
  22. Basseville M, Abdelghani M, Benveniste A: Subspace-based fault detection algorithms for vibration monitoring. Automatica 2000,36(1):101-109. 10.1016/S0005-1098(99)00093-XMathSciNetView ArticleMATHGoogle Scholar
  23. Godambe VP (Ed): Estimating Functions. Clarendon Press, Oxford, UK; 1991.MATHGoogle Scholar
  24. Heyde CC: Quasi-Likelihood and Its Application, Series in Statistics. Springer, New York, NY, USA; 1997.View ArticleGoogle Scholar
  25. Benveniste A, Métivier M, Priouret P: Adaptive Algorithms and Stochastic Approximations, Applications of Mathematics. Volume 22. Springer, New York, NY, USA; 1990.View ArticleMATHGoogle Scholar
  26. Mc Leish DL, Small CG: The Theory and Application of Statistical Inference Functions, Lecture Notes in Statistics. Volume 44. Springer, Berlin, Germany; 1988.View ArticleGoogle Scholar
  27. Mevel L, Benveniste A, Basseville M, et al.: Input/output versus output-only data processing for structural identification—application to in-flight data analysis. Journal of Sound and Vibration 2006,295(3):531-552. 10.1016/j.jsv.2006.01.039View ArticleGoogle Scholar
  28. Benveniste A, Fuchs J-J: Single sample modal identfication of a non-stationary stochastic process. IEEE Transactions on Automatic Control 1985,30(1):66-74. 10.1109/TAC.1985.1103787MathSciNetView ArticleMATHGoogle Scholar
  29. Benveniste A, Mevel L: Nonstationary consistency of subspace methods. In Research Report 1752. IRISA, Rennes, France; 2005. http://hal.inria.fr/inria-00000869Google Scholar
  30. Benveniste A, Mevel L: Nonstationary consistency of subspace methods. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC '05), December 2005, Seville, Spain. IEEE & EUCA; 7096-7101.View ArticleGoogle Scholar
  31. Mevel L, Benveniste A, Basseville M, Goursat M: Blind subspace-based eigenstructure identification under nonstationary excitation using moving sensors. IEEE Transactions on Signal Processing 2002,50(1):41-48. 10.1109/78.972480View ArticleGoogle Scholar
  32. Jategaonkar R, Fischenberg D, von Gruenhagen W: Aerodynamic modeling and system identification from flight data—recent applications at DLR. AIAA Journal of Aircraft 2004,41(4):681-691. 10.2514/1.3165View ArticleGoogle Scholar
  33. Cauberghe B, Guillaume P, Pintelon R, Verboven P: Frequency-domain subspace identification using FRF data from arbitrary signals. Journal of Sound and Vibration 2006,290(3–5):555-571.View ArticleGoogle Scholar
  34. McKelvey T, Akcay H, Ljung L: Subspace-based multivariable system identification from frequency response data. IEEE Transactions on Automatic Control 1996,41(7):960-979. 10.1109/9.508900MathSciNetView ArticleMATHGoogle Scholar
  35. Vold H, Kundrat J, Rocklin T, Russel R: A multi-input modal parameter estimation algorithm for mini-computers. SAE Transaction 1982,91(1):815-821. SAE paper 820194Google Scholar
  36. Devauchelle B, Basseville M, Benveniste A: Diagnosing mechanical changes in vibrating systems. In Proceedings of the 1st Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS '91), September 1991, Baden-Baden, FRG, Germany. IFAC /IMACS; 159-164.Google Scholar
  37. Moustakides G: The problem of diagnosis with respect to physical parameters for changes in structures. In Research Report 295. IRISA, Rennes, France; 1986.Google Scholar
  38. Moustakides G, Basseville M, Benveniste A, Vey GL: Diagnosing mechanical changes in vibrating systems. In Research Report 436. IRISA, Rennes, France; 1988.Google Scholar
  39. Basseville M, Mevel L, Goursat M: Statistical model-based damage detection and localization: subspace-based residuals and damage-to-noise sensitivity ratios. Journal of Sound and Vibration 2004,275(3–5):769-794.View ArticleGoogle Scholar
  40. Basawa I: Neyman-Le Cam tests based on estimating functions. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer. Volume 2. Edited by: Le Cam L, Olshen R. Wadsworth, Belmont, Calif, USA; 1985:811-825.Google Scholar
  41. Basawa I, Godambe VP, Taylor R (Eds): Selected proceedings of the Symposium on Estimating Functions. Institute of Mathematical Statistics, Hayward, Calif, USA; 1997.Google Scholar
  42. Hall W, Mathiason D: On large sample estimation and testing in parametric models. International Statistical Review 1990,58(1):77-97. 10.2307/1403475View ArticleMATHGoogle Scholar
  43. Basseville M: On-board component fault detection and isolation using the statistical local approach. Automatica 1998,34(11):1391-1415. 10.1016/S0005-1098(98)00086-7View ArticleMATHGoogle Scholar
  44. Basseville M, Nikiforov IV: Detection of Abrupt Changes—Theory and Applications, Information and System Sciences Series. Prentice-Hall, Englewood Cliffs, NJ, USA; 1993.Google Scholar
  45. Mevel L, Basseville M, Benveniste A: Fast in-flight detection of flutter onset: a statistical approach. AIAA Journal of Guidance, Control, and Dynamics 2005,28(3):431-438. 10.2514/1.6184View ArticleGoogle Scholar
  46. Benveniste A, Basseville M, Moustakides GV: The asymptotic local approach to change detection and model validation. IEEE Transactions on Automatic Control 1987,32(7):583-592. 10.1109/TAC.1987.1104683MathSciNetView ArticleMATHGoogle Scholar
  47. Delyon B, Juditsky A, Benveniste A: On the relationship between identfication and local tests. In Research Report 1104. IRISA, Rennes, France; 1997. http://www.irisa.fr/bibli/publi/pi/1997/1104/1104.htmlGoogle Scholar
  48. Zhang Q, Basseville M, Benveniste A: Early warning of slight changes in systems. Automatica 1994,30(1):95-113. 10.1016/0005-1098(94)90231-3MathSciNetView ArticleMATHGoogle Scholar
  49. Zhang Q, Basseville M:Advanced numerical computation of -tests for fault detection and isolation. In Proceedings of the 5th Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS '03), June 2003, Washington, DC, USA. IFAC /IMACS; 211-216.Google Scholar
  50. Moustakides G, Benveniste A: Detecting changes in the AR parameters of a nonstationary ARMA process. Stochastics 1986, 16: 137-155. 10.1080/17442508608833370MathSciNetView ArticleMATHGoogle Scholar
  51. Basseville M, Benveniste A, Moustakides G, Rougée A: Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems. Automatica 1987,23(4):479-489. 10.1016/0005-1098(87)90077-XMathSciNetView ArticleMATHGoogle Scholar
  52. Mevel L, Goursat M, Basseville M: Stochastic subspace-based structural identification and damage detection and localisation—application to the Z24 bridge benchmark. Mechanical Systems and Signal Processing 2003,17(1):143-151. 10.1006/mssp.2002.1552View ArticleGoogle Scholar
  53. Basseville M: An invariance property of some subspace-based detection algorithms. IEEE Transactions on Signal Processing 1999,47(12):3398-3400. 10.1109/78.806083View ArticleMATHGoogle Scholar
  54. Rougée A, Basseville M, Benveniste A, Moustakides G: Optimum robust detection of changes in the AR part of a multivariable ARMA process. IEEE Transactions on Automatic Control 1987,32(12):1116-1120. 10.1109/TAC.1987.1104500View ArticleMATHGoogle Scholar
  55. Ladelli L: Diffusion approximation for a pseudo-likelihood test process with application to detection of change in a stochastic system. Stochastics and Stochastics Reports 1990,32(1):1-25.MathSciNetView ArticleMATHGoogle Scholar
  56. Ljung L: System Identification—Theory for the User. 2nd edition. PTR Prentice Hall, Upper Saddle River, NJ, USA; 1999.MATHGoogle Scholar
  57. Basseville M, Benveniste A, Mevel L: Handling uncertainties in identification and model validation: a statistical approach. In Proceedings of the 24th International Modal Analysis Conference (IMAC '06), January 2006, Saint Louis, Mich, USA. SEM; tutorial paperGoogle Scholar
  58. Mevel L, Goursat M: Model validation by using a damage detection test. In Proceedings of the 24th International Modal Analysis Conference (IMAC '06), January 2006, Saint Louis, Mich, USA. SEM;Google Scholar
  59. Gersch W: On the achievable accuracy of structural parameter estimates. Journal of Sound and Vibration 1974,34(1):63-79. 10.1016/S0022-460X(74)80355-XView ArticleMATHGoogle Scholar
  60. Basseville M, Goursat M, Mevel L: Multiple CUSUM tests for flutter monitoring. In Proceedings of the 14th Symposium on System Identfication (SYSID '06), March 2006, Newcastle, Australia. IFAC /IFORS; 624-629.Google Scholar
  61. Goethals I, Mevel L, Benveniste A, de Moor B: Recursive output-only subspace identification for in-flight flutter monitoring. In Proceedings of the 22nd International Modal Analysis Conference (IMAC '04), January 2004, Dearborn, Mich, USA. SEM;Google Scholar
  62. Mevel L, Coursat M, Basseville M, Benveniste A: On-line monitoring of slow to fast evolving aeronautic structures. Proceedings of the International Conference on Noise and Vibration Engineering (ISMA '04), September 2004, Leuven, Belgium 1033-1047.Google Scholar
  63. Basseville M, Benveniste A, Gach-Devauchelle B, et al.: In situ damage monitoring in vibration mechanics: diagnostics and predictive maintenance. Mechanical Systems and Signal Processing 1993,7(5):401-423. 10.1006/mssp.1993.1023View ArticleGoogle Scholar
  64. Basseville M, Mevel L, Vecchio A, Peeters B, van der Auweraer H: Output-only subspace-based damage detection—application to a reticular structure. Structural Health Monitoring 2003,2(2):161-168. 10.1177/1475921703002002008View ArticleGoogle Scholar
  65. Goursat M, Mevel L: On-line monitoring of bradford stadium. In Proceedings of the 23rd International Modal Analysis Conference (IMAC '05), January 2005, Orlando, Fla, USA. SEM;Google Scholar
  66. Goursat M, Mevel L: On-line monitoring of the crowd influence on manchester stadium. In Proceedings of the 24th International Modal Analysis Conference (IMAC '06), January 2006, Saint Louis, Mich, USA. SEM;Google Scholar
  67. Mevel L, Basseville M, Goursat M: Stochastic subspace-based structural identification and damage detection—application to the steel-quake benchmark. Mechanical Systems and Signal Processing 2003,17(1):91-101. 10.1006/mssp.2002.1544View ArticleGoogle Scholar
  68. Mevel L, Hermans L, van der Auweraer H: On the application of a subspace-based fault detection method to industrial structures. Mechanical Systems and Signal Processing 1999,13(6):823-838. 10.1006/mssp.1999.1247View ArticleGoogle Scholar
  69. Peeters B, Mevel L, Vanlanduit S, et al.: Online vibration-based crack detection during fatigue testing. Key Engineering Materials 2003,245(2):571-578.View ArticleGoogle Scholar
  70. Mevel L, Goursat M, Basseville M, Benveniste A: Subspace-based modal identification and monitoring of large structures, a Scilab toolbox. In Proceedings of the 13th Symposium on System identification (SYSID '03), August 2003, Rotterdam, The Netherlands. IFAC /IFORS; 1405-1410. http://www.irisa.fr/sisthem/cosmad/Google Scholar
  71. Brenner M, Lind R, Voracek D: Overview of recent flight flutter testing research at NASA Dryden. In Technical Memorandum NASA TM-4792. NASA Dryden, Edwards, Calif, USA; 1997.Google Scholar
  72. Pickrel C, White P: Flight flutter testing of transport aircraft: in-flight modal analysis. In Proceedings of the 21st International Modal Analysis Conference (IMAC '03), February 2003, Kissimmee, Fla, USA. SEM;Google Scholar
  73. Lind R: Flight testing with the flutterometer. Journal of Aircraft 2003,40(3):574-579. 10.2514/2.3132MathSciNetView ArticleGoogle Scholar
  74. Peeters B, Maeck J, De Roeck G: Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart Materials and Structures 2001,10(3):518-527. 10.1088/0964-1726/10/3/314View ArticleGoogle Scholar
  75. Basseville M: Information criteria for residual generation and fault detection and isolation. Automatica 1997,33(5):783-803. 10.1016/S0005-1098(97)00004-6MathSciNetView ArticleMATHGoogle Scholar
  76. Basseville M, Nikiforov IV: Fault isolation for diagnosis: nuisance rejection and multiple hypothesis testing. Annual Reviews in Control 2002,26(2):189-202. 10.1016/S1367-5788(02)00029-9View ArticleGoogle Scholar
  77. Basseville M, Nikiforov IV: Handling nuisance parameters in systems monitoring. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC '05), December 2005, Seville, Spain. IEEE & EUCA; 3832-3837.View ArticleGoogle Scholar

Copyright

© Basseville et al. 2007

Advertisement