Skip to main content
  • Research Article
  • Open access
  • Published:

A Biologically Motivated Multiresolution Approach to Contour Detection

Abstract

Standard edge detectors react to all local luminance changes, irrespective of whether they are due to the contours of the objects represented in a scene or due to natural textures like grass, foliage, water, and so forth. Moreover, edges due to texture are often stronger than edges due to object contours. This implies that further processing is needed to discriminate object contours from texture edges. In this paper, we propose a biologically motivated multiresolution contour detection method using Bayesian denoising and a surround inhibition technique. Specifically, the proposed approach deploys computation of the gradient at different resolutions, followed by Bayesian denoising of the edge image. Then, a biologically motivated surround inhibition step is applied in order to suppress edges that are due to texture. We propose an improvement of the surround suppression used in previous works. Finally, a contour-oriented binarization algorithm is used, relying on the observation that object contours lead to long connected components rather than to short rods obtained from textures. Experimental results show that our contour detection method outperforms standard edge detectors as well as other methods that deploy inhibition.

References

  1. Canny J: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986,8(6):679-698.

    Article  Google Scholar 

  2. Frei W, Chen C-C: Fast boundary detection: a generalization and a new algorithm. IEEE Transactions on Computers 1977,26(10):988-998.

    Article  Google Scholar 

  3. Hildreth EC: The detection of intensity changes by computer and biological vision systems. Computer Vision, Graphics, and Image Processing 1983,22(1):1-27. 10.1016/0734-189X(83)90093-2

    Article  Google Scholar 

  4. Martens J-B: Local orientation analysis in images by means of the Hermite transform. IEEE Transactions on Image Processing 1997,6(8):1103-1116. 10.1109/83.605408

    Article  Google Scholar 

  5. Nevatia R, Babu KR: Linear feature extraction and description. Computer Vision, Graphics, and Image Processing 1980,13(3):257-269. 10.1016/0146-664X(80)90049-0

    Article  Google Scholar 

  6. Gregson PH: Using angular dispersion of gradient direction for detecting edge ribbons. IEEE Transactions on Pattern Analysis and Machine Intelligence 1993,15(7):682-696. 10.1109/34.221169

    Article  Google Scholar 

  7. Zuniga OA, Haralick RM: Integrated directional derivative gradient operator. IEEE Transactions on Systems, Man and Cybernetics 1987,17(3):508-517.

    Article  Google Scholar 

  8. Chen G, Yang YHH: Edge detection by regularized cubic B-spline fitting. IEEE Transactions on Systems, Man and Cybernetics 1995,25(4):636-643. 10.1109/21.370194

    Article  Google Scholar 

  9. Ghosal S, Mehrotra R: Detection of composite edges. IEEE Transactions on Image Processing 1994,3(1):14-25. 10.1109/83.265977

    Article  Google Scholar 

  10. Haralick RM: Digital step edges from zero crossing of second directional derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984,6(1):58-68.

    Article  Google Scholar 

  11. Nalwa VS, Binford TO: On detecting edges. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986,8(6):699-714.

    Article  Google Scholar 

  12. Morrone MC, Burr DC: Feature detection in human vision: a phase-dependent energy model. Proceedings of the Royal Society of London. Series B, Biological sciences 1988,235(1280):221-245. 10.1098/rspb.1988.0073

    Article  Google Scholar 

  13. Folsom TC, Pinter RB: Primitive features by steering, quadrature, and scale. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998,20(11):1161-1173. 10.1109/34.730552

    Article  Google Scholar 

  14. Heitger F: Feature detection using suppression and enhancement. In Tech. Rep. TR-163. Communication Technology Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland; 1995.

    Google Scholar 

  15. Kovesi P: Image features from phase congruency. Videre: Journal on Computer Vision Research 1999,1(3):2-27.

    Google Scholar 

  16. Morrone MC, Owens RA: Feature detection from local energy. Pattern Recognition Letters 1987,6(5):303-313. 10.1016/0167-8655(87)90013-4

    Article  Google Scholar 

  17. Zhou YT, Venkateswar V, Chellappa R: Edge detection and linear feature extraction using a 2-D random field model. IEEE Transactions on Pattern Analysis and Machine Intelligence 1989,11(1):84-95. 10.1109/34.23115

    Article  Google Scholar 

  18. Ando S: Image field categorization and edge/corner detection from gradient covariance. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000,22(2):179-190. 10.1109/34.825756

    Article  Google Scholar 

  19. Meer P, Georgescu B: Edge detection with embedded confidence. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001,23(12):1351-1365. 10.1109/34.977560

    Article  Google Scholar 

  20. Black MJ, Sapiro G, Marimont DH, Heeger D: Robust anisotropic diffusion. IEEE Transactions on Image Processing 1998,7(3):421-432. 10.1109/83.661192

    Article  Google Scholar 

  21. Chen Y, Barcelos CAZ, Mair BA: Smoothing and edge detection by time-varying coupled nonlinear diffusion equations. Computer Vision and Image Understanding 2001,82(2):85-100. 10.1006/cviu.2001.0903

    Article  MATH  Google Scholar 

  22. Perona P, Malik J: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 1990,12(7):629-639. 10.1109/34.56205

    Article  Google Scholar 

  23. Weickert J: A review of nonlinear diffusion filtering. In Scale-Space Theory in Computer Vision, Lecture Notes in Computer Science. Volume 1252. Springer, New York, NY, USA; 1997:3-28.

    Google Scholar 

  24. Ma W-Y, Manjunath BS: EdgeFlow: a technique for boundary detection and image segmentation. IEEE Transactions on Image Processing 2000,9(8):1375-1388. 10.1109/83.855433

    Article  MathSciNet  MATH  Google Scholar 

  25. Malik J, Belongie S, Leung T, Shi J: Contour and texture analysis for image segmentation. International Journal of Computer Vision 2001,43(1):7-27. 10.1023/A:1011174803800

    Article  MATH  Google Scholar 

  26. Manjunath BS, Chellappa RS: A unified approach to boundary perception: edges, textures, and illusory contours. IEEE Transactions on Neural Networks 1993,4(1):96-108. 10.1109/72.182699

    Article  Google Scholar 

  27. Grigorescu C, Petkov N, Westenberg MA: Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing 2003,12(7):729-739. 10.1109/TIP.2003.814250

    Article  Google Scholar 

  28. Li Z: Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cortex. Network: Computation in Neural Systems 1999,10(2):187-212. 10.1088/0954-898X/10/2/305

    Article  MATH  Google Scholar 

  29. Petkov N, Kruizinga P: Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: bar and grating cells. Biological Cybernetics 1997,76(2):83-96. 10.1007/s004220050323

    Article  MATH  Google Scholar 

  30. Petkov N, Westenberg MA: Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition. Biological Cybernetics 2003,88(3):236-246. 10.1007/s00422-002-0378-2

    Article  MATH  Google Scholar 

  31. Marr D, Hildreth EC: Theory of edge detection. Proceedings of the Royal Society of London. Series B, Biological sciences 1980,207(1167):187-217. 10.1098/rspb.1980.0020

    Article  Google Scholar 

  32. Field DJ, Hayes A, Hess RF: Contour integration by the human visual system: evidence for a local "association field". Vision Research 1993,33(2):173-193. 10.1016/0042-6989(93)90156-Q

    Article  Google Scholar 

  33. Kanizsa G: Organization in Vision: Essays on Gestalt Perception. Praeger, New York, NY, USA; 1979.

    Google Scholar 

  34. Nothdurft HC: Texture segmentation and pop-out from orientation contrast. Vision Research 1991,31(6):1073-1078. 10.1016/0042-6989(91)90211-M

    Article  Google Scholar 

  35. Solomon JA, Pelli DG: The visual filter mediating letter identification. Nature 1994,369(6479):395-397. 10.1038/369395a0

    Article  Google Scholar 

  36. Kapadia MK, Westheimer G, Gilbert CD: Spatial distribution of contextual interactions in primary visual cortex and in visual perception. Journal of Neurophysiology 2000,84(4):2048-2062.

    Article  Google Scholar 

  37. Knierim JJ, van Essen DC: Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology 1992,67(4):961-980.

    Article  Google Scholar 

  38. Nothdurft HC, Gallant JL, van Essen DC: Response modulation by texture surround in primate area V1: correlates of "popout" under anesthesia. Visual Neuroscience 1999,16(1):15-34.

    Article  Google Scholar 

  39. Jones HE, Grieve KL, Wang W, Sillito AM: Surround suppression in primate V1. Journal of Neurophysiology 2001,86(10):2011-2028.

    Article  Google Scholar 

  40. Portilla J, Strela V, Wainwright MJ, Simoncelli EP: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing 2003,12(11):1338-1351. 10.1109/TIP.2003.818640

    Article  MathSciNet  MATH  Google Scholar 

  41. Julesz B: Visual pattern discrimination. IRE Transactions on Information Theory 1962,8(2):84-92. 10.1109/TIT.1962.1057698

    Article  Google Scholar 

  42. Campbell FW, Robson JG: Application of Fourier analysis to the visibility of gratings. Journal of Physiology 1968,197(3):551-566.

    Article  Google Scholar 

  43. Mallat SG: Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(12):2091-2110. 10.1109/29.45554

    Article  Google Scholar 

  44. Morrone MC, Burr DC: Capture and transparency in coarse quantized images. Vision Research 1997,37(18):2609-2629. 10.1016/S0042-6989(97)00052-7

    Article  Google Scholar 

  45. Richards W, Nishihara HK, Dawson B: CARTOON: a biologically motivated edge detection algorithm. In Natural Computation, MIT A.I. Memo no. 668. Edited by: Richards W. MIT Press, Cambridge, Mass, USA; 1988:55-69. chapter 4

    Google Scholar 

  46. Papari G, Campisi P, Petkov N, Neri A: A multiscale approach to conour detection by texture suppression. Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, January 2006, San Jose, Calif, USA, Proceedings of the SPIE 6064: 107–118.

    Google Scholar 

  47. Wainwright MJ, Simoncelli EP, Willsky AS: Random cascades on wavelet trees and their use in analyzing and modeling natural images. Applied and Computational Harmonic Analysis 2001,11(1):89-123. special issue on wavelet applications 10.1006/acha.2000.0350

    Article  MathSciNet  MATH  Google Scholar 

  48. Simoncelli EP: Statistical modeling of photographic images. In Handbook of Image and Video Processing. 2nd edition. Edited by: Bovik A. Academic Press, Boston, Mass, USA; 2005:431-441. chapter 4.7

    Chapter  Google Scholar 

  49. Crouse MS, Nowak RD, Baraniuk RG: Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing 1998,46(4):886-902. 10.1109/78.668544

    Article  MathSciNet  Google Scholar 

  50. Mihçak MK, Kozintsev I, Ramchandran K, Moulin P: Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters 1999,6(12):300-303. 10.1109/97.803428

    Article  Google Scholar 

  51. Portilla J, Strela V, Wainwright MJ, Simoncelli EP: Adaptive Wiener denoising using a Gaussian scale mixture model in the wavelet domain. Proceedings of the 8th IEEE International Conference on Image Processing (ICIP '01), October 2001, Thessaloniki, Greece 2: 37–40.

    Google Scholar 

  52. Portilla J, Simoncelli EP: A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision 2000,40(1):49-71. 10.1023/A:1026553619983

    Article  MATH  Google Scholar 

  53. Jacovitti J, Neri A: Anisotropic wavelet thresholding for Bayesian image denoising. Proceedings of the 11th European Signal Processing Conference (EUSIPCO '02), September 2002, Toulouse, France 3: 267–270.

    Google Scholar 

  54. Grigorescu C, Petkov N, Westenberg MA: Contour and boundary detection improved by surround suppression of texture edges. Image and Vision Computing 2004,22(8):609-622. 10.1016/j.imavis.2003.12.004

    Article  Google Scholar 

  55. Xiao D-K, Raiguel S, Marcar V, Koenderink J, Orban GA: Spatial heterogeneity of inhibitory surrounds in the middle temporal visual area. Proceedings of the National Academy of Sciences of the United States of America 1995,92(24):11303-11306. 10.1073/pnas.92.24.11303

    Article  Google Scholar 

  56. Heimans HJAM: Morphological Image Operators. Academic Press, Boston, Mass, USA; 1994.

    Google Scholar 

  57. Heijmans HJAM: Connected morphological operators for binary images. Computer Vision and Image Understanding 1999,73(1):99-120. 10.1006/cviu.1998.0703

    Article  MathSciNet  MATH  Google Scholar 

  58. Lindeberg T: Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision 1998,30(2):117-154. 10.1023/A:1008097225773

    Article  Google Scholar 

  59. Liang K-H, Tjahjadi T, Yang Y-H: Bounded diffusion for multiscale edge detection using regularized cubic B-spline fitting. IEEE Transactions on Systems, Man, and Cybernetics 1999,29(2):291-297. 10.1109/3477.752803

    Article  Google Scholar 

  60. Ding A, Goshtasby A: On the canny edge detector. Pattern Recognition 2001,34(3):721-725. 10.1016/S0031-3203(00)00023-6

    Article  MATH  Google Scholar 

  61. Olson CF: Adaptive-scale filtering and feature detection using range data. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000,22(9):983-991. 10.1109/34.877521

    Article  Google Scholar 

  62. Martin DR, Fowlkes CC, Malik J: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004,26(5):530-549. 10.1109/TPAMI.2004.1273918

    Article  Google Scholar 

  63. Bowyer K, Kranenburg C, Dougherty S: Edge detector evaluation using empirical ROC curves. Computer Vision and Image Understanding 2001,84(1):77-103. 10.1006/cviu.2001.0931

    Article  MATH  Google Scholar 

  64. Kitchen L, Rosenfeld A: Edge evaluation using local edge coherence. IEEE Transactions on Systems, Man and Cybernetics 1981,11(9):597-605.

    Article  Google Scholar 

  65. Shin M, Goldgof D, Bowyer KW: An objective comparison methodology of edge detection algorithms for structure from motion task. In Empirical Evaluation Techniques in Computer Vision. IEEE Press, New York, NY, USA; 1998:235-254.

    Google Scholar 

  66. Shin MC, Goldgof DB, Bowyer KW: Comparison of edge detector performance through use in an object recognition task. Computer Vision and Image Understanding 2001,84(1):160-178. 10.1006/cviu.2001.0932

    Article  MATH  Google Scholar 

  67. Petkov N, Westenberg MA: Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition. Biological Cybernetics 2003,88(3):236-246. 10.1007/s00422-002-0378-2

    Article  MATH  Google Scholar 

  68. Grigorescu C, Petkov N: Distance sets for shape filters and shape recognition. IEEE Transactions on Image Processing 2003,12(10):1274-1286. 10.1109/TIP.2003.816010

    Article  MathSciNet  MATH  Google Scholar 

  69. Ghosh A, Petkov N: Robustness of shape descriptors to incomplete contour representations. IEEE Transactions on Pattern Analysis and Machine Intelligence 2005,27(11):1793-1804.

    Article  Google Scholar 

  70. Ghosh A, Petkov N: A cognitive evaluation procedure for contour based shape descriptors. International Journal of Hybrid Intelligent Systems 2005,2(4):237-252.

    Article  MATH  Google Scholar 

  71. Ghosh A, Petkov N: Effect of high curvature point deletion on the performance of two contour based shape recognition algorithms. International Journal of Pattern Recognition and Artificial Intelligence 2006,20(6):913-924. 10.1142/S0218001406005046

    Article  Google Scholar 

  72. Bergholm F: Edge focusing. IEEE Transactions on Pattern Analysis and Machine Intelligence 1987,9(6):726-741.

    Article  Google Scholar 

  73. Goshtasby A: On edge focusing. Image and Vision Computing 1994,12(4):247-256. 10.1016/0262-8856(94)90078-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Papari.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Papari, G., Campisi, P., Petkov, N. et al. A Biologically Motivated Multiresolution Approach to Contour Detection. EURASIP J. Adv. Signal Process. 2007, 071828 (2007). https://doi.org/10.1155/2007/71828

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/71828

Keywords