Skip to main content

High-Resolution Source Localization Algorithm Based on the Conjugate Gradient

Abstract

This paper proposes a new algorithm for the direction of arrival (DOA) estimation of P radiating sources. Unlike the classical subspace-based methods, it does not resort to the eigendecomposition of the covariance matrix of the received data. Indeed, the proposed algorithm involves the building of the signal subspace from the residual vectors of the conjugate gradient (CG) method. This approach is based on the same recently developed procedure which uses a noneigenvector basis derived from the auxiliary vectors (AV). The AV basis calculation algorithm is replaced by the residual vectors of the CG algorithm. Then, successive orthogonal gradient vectors are derived to form a basis of the signal subspace. A comprehensive performance comparison of the proposed algorithm with the well-known MUSIC and ESPRIT algorithms and the auxiliary vectors (AV)-based algorithm was conducted. It shows clearly the high performance of the proposed CG-based method in terms of the resolution capability of closely spaced uncorrelated and correlated sources with a small number of snapshots and at low signal-to-noise ratio (SNR).

References

  1. 1.

    Krim H, Viberg M: Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine 1996,13(4):67-94. 10.1109/79.526899

    Article  Google Scholar 

  2. 2.

    Schmidt RO: Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 1986,34(3):276-280. 10.1109/TAP.1986.1143830

    Article  Google Scholar 

  3. 3.

    Roy R, Kailath T: ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(7):984-995. 10.1109/29.32276

    Article  Google Scholar 

  4. 4.

    Kumaresan R, Tufts DW: Estimating the angles of arrival of multiple plane waves. IEEE Transactions on Aerospace and Electronic Systems 1983,19(1):134-139.

    Article  Google Scholar 

  5. 5.

    Viberg M, Ottersten B, Kailath T: Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Transactions on Signal Processing 1991,39(11):2436-2449. 10.1109/78.97999

    Article  Google Scholar 

  6. 6.

    Chen H, Sarkar TK, Dianat SA, Brule JD: Adaptive spectral estimation by the conjugate gradient method. IEEE Transactions on Acoustics, Speech, and Signal Processing 1986,34(2):272-284. 10.1109/TASSP.1986.1164812

    Article  Google Scholar 

  7. 7.

    Yang X, Sarkar TK, Arvas E: A survey of conjugate gradient algorithms for solution of extreme eigen-problems of a symmetric matrix. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(10):1550-1556. 10.1109/29.35393

    MathSciNet  Article  Google Scholar 

  8. 8.

    Chang PS, Willson AN Jr.: Adaptive spectral estimation using the conjugate gradient algorithm. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '96), May 1996, Atlanta, Ga, USA 5: 2979–2982.

    Google Scholar 

  9. 9.

    Fu Z, Dowling EM: Conjugate gradient eigenstructure tracking for adaptive spectral estimation. IEEE Transactions on Signal Processing 1995,43(5):1151-1160. 10.1109/78.382400

    Article  Google Scholar 

  10. 10.

    Choi S, Sarkar TK, Choi J: Adaptive antenna array for direction-of-arrival estimation utilizing the conjugate gradient method. Signal Processing 1995,45(3):313-327. 10.1016/0165-1684(95)00060-Q

    Article  Google Scholar 

  11. 11.

    Chang PS, Willson AN Jr.: Conjugate gradient method for adaptive direction-of-arrival estimation of coherent signals. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '97), April 1997, Munich, Germany 3: 2281–2284.

    Google Scholar 

  12. 12.

    Golub GH, Loan CFV: Matrix Computations. 3rd edition. Johns Hopkins University Press, Baltimore, Md, USA; 1996.

    Google Scholar 

  13. 13.

    Grover R, Pados DA, Medley MJ: Super-resolution direction finding with an auxiliary-vector basis. Digital Wireless Communications VII and Space Communication Technologies, March 2005, Orlando, Fla, USA, Proceedings of SPIE 5819: 357–365.

    Google Scholar 

  14. 14.

    Grover R, Pados DA, Medley MJ: Subspace direction finding with an auxiliary-vector basis. IEEE Transactions on Signal Processing 2007,55(2):758-763.

    MathSciNet  Article  Google Scholar 

  15. 15.

    Burykh S, Abed-Meraim K: Reduced-rank adaptive filtering using Krylov subspace. EURASIP Journal on Applied Signal Processing 2002,2002(12):1387-1400. 10.1155/S1110865702209129

    MATH  Google Scholar 

  16. 16.

    Chen W, Mitra U, Schniter P: On the equivalence of three reduced rank linear estimators with applications to DS-CDMA. IEEE Transactions on Information Theory 2002,48(9):2609-2614. 10.1109/TIT.2002.801472

    MathSciNet  Article  Google Scholar 

  17. 17.

    Xu G, Kailath T: Fast subspace decomposition. IEEE Transactions on Signal Processing 1994,42(3):539-551. 10.1109/78.277846

    Article  Google Scholar 

  18. 18.

    Pados DA, Batalama SN: Joint space-time auxiliary-vector filtering for DS/CDMA systems with antenna arrays. IEEE Transactions on Communications 1999,47(9):1406-1415. 10.1109/26.789676

    Article  Google Scholar 

  19. 19.

    Pados DA, Karystinos GN: An iterative algorithm for the computation of the MVDR filter. IEEE Transactions on Signal Processing 2001,49(2):290-300. 10.1109/78.902111

    Article  Google Scholar 

  20. 20.

    Zhang QT: Probability of resolution of the MUSIC algorithm. IEEE Transactions on Signal Processing 1995,43(4):978-987. 10.1109/78.376849

    Article  Google Scholar 

  21. 21.

    Pillai SU, Kwon BH: Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(1):8-15. 10.1109/29.17496

    Article  Google Scholar 

  22. 22.

    Qian H, Batalama SN: Data record-based criteria for the selection of an auxiliary vector estimator of the MMSE/MVDR filter. IEEE Transactions on Communications 2003,51(10):1700-1708. 10.1109/TCOMM.2003.818089

    Article  Google Scholar 

  23. 23.

    Segovia-Vargas D, Iñigo F, Sierra-Pérez M: Generalized eigenspace beamformer based on CG-Lanczos algorithm. IEEE Transactions on Antennas and Propagation 2003,51(8):2146-2154. 10.1109/TAP.2003.814744

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hichem Semira.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Semira, H., Belkacemi, H. & Marcos, S. High-Resolution Source Localization Algorithm Based on the Conjugate Gradient. EURASIP J. Adv. Signal Process. 2007, 073871 (2007). https://doi.org/10.1155/2007/73871

Download citation

Keywords

  • Conjugate Gradient
  • Localization Algorithm
  • Gradient Vector
  • Basis Calculation
  • Residual Vector