Skip to content


  • Research Article
  • Open Access

High-Resolution Source Localization Algorithm Based on the Conjugate Gradient

EURASIP Journal on Advances in Signal Processing20072007:073871

  • Received: 28 September 2006
  • Accepted: 25 March 2007
  • Published:


This paper proposes a new algorithm for the direction of arrival (DOA) estimation of P radiating sources. Unlike the classical subspace-based methods, it does not resort to the eigendecomposition of the covariance matrix of the received data. Indeed, the proposed algorithm involves the building of the signal subspace from the residual vectors of the conjugate gradient (CG) method. This approach is based on the same recently developed procedure which uses a noneigenvector basis derived from the auxiliary vectors (AV). The AV basis calculation algorithm is replaced by the residual vectors of the CG algorithm. Then, successive orthogonal gradient vectors are derived to form a basis of the signal subspace. A comprehensive performance comparison of the proposed algorithm with the well-known MUSIC and ESPRIT algorithms and the auxiliary vectors (AV)-based algorithm was conducted. It shows clearly the high performance of the proposed CG-based method in terms of the resolution capability of closely spaced uncorrelated and correlated sources with a small number of snapshots and at low signal-to-noise ratio (SNR).


  • Conjugate Gradient
  • Localization Algorithm
  • Gradient Vector
  • Basis Calculation
  • Residual Vector

Authors’ Affiliations

Département d'électronique, Université d'Annaba, BP 12, Sidi Amar, Annaba, 23000, Algeria
Laboratoire des Signaux et Systèmes (LSS), CNRS, 3 Rue Joliot-Curie, Plateau du Moulon, Gif-sur-Yvette, Cedex, 91192, France


  1. Krim H, Viberg M: Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine 1996,13(4):67-94. 10.1109/79.526899View ArticleGoogle Scholar
  2. Schmidt RO: Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 1986,34(3):276-280. 10.1109/TAP.1986.1143830View ArticleGoogle Scholar
  3. Roy R, Kailath T: ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(7):984-995. 10.1109/29.32276View ArticleGoogle Scholar
  4. Kumaresan R, Tufts DW: Estimating the angles of arrival of multiple plane waves. IEEE Transactions on Aerospace and Electronic Systems 1983,19(1):134-139.View ArticleGoogle Scholar
  5. Viberg M, Ottersten B, Kailath T: Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Transactions on Signal Processing 1991,39(11):2436-2449. 10.1109/78.97999View ArticleGoogle Scholar
  6. Chen H, Sarkar TK, Dianat SA, Brule JD: Adaptive spectral estimation by the conjugate gradient method. IEEE Transactions on Acoustics, Speech, and Signal Processing 1986,34(2):272-284. 10.1109/TASSP.1986.1164812View ArticleGoogle Scholar
  7. Yang X, Sarkar TK, Arvas E: A survey of conjugate gradient algorithms for solution of extreme eigen-problems of a symmetric matrix. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(10):1550-1556. 10.1109/29.35393MathSciNetView ArticleGoogle Scholar
  8. Chang PS, Willson AN Jr.: Adaptive spectral estimation using the conjugate gradient algorithm. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '96), May 1996, Atlanta, Ga, USA 5: 2979–2982.Google Scholar
  9. Fu Z, Dowling EM: Conjugate gradient eigenstructure tracking for adaptive spectral estimation. IEEE Transactions on Signal Processing 1995,43(5):1151-1160. 10.1109/78.382400View ArticleGoogle Scholar
  10. Choi S, Sarkar TK, Choi J: Adaptive antenna array for direction-of-arrival estimation utilizing the conjugate gradient method. Signal Processing 1995,45(3):313-327. 10.1016/0165-1684(95)00060-QView ArticleGoogle Scholar
  11. Chang PS, Willson AN Jr.: Conjugate gradient method for adaptive direction-of-arrival estimation of coherent signals. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '97), April 1997, Munich, Germany 3: 2281–2284.Google Scholar
  12. Golub GH, Loan CFV: Matrix Computations. 3rd edition. Johns Hopkins University Press, Baltimore, Md, USA; 1996.MATHGoogle Scholar
  13. Grover R, Pados DA, Medley MJ: Super-resolution direction finding with an auxiliary-vector basis. Digital Wireless Communications VII and Space Communication Technologies, March 2005, Orlando, Fla, USA, Proceedings of SPIE 5819: 357–365.Google Scholar
  14. Grover R, Pados DA, Medley MJ: Subspace direction finding with an auxiliary-vector basis. IEEE Transactions on Signal Processing 2007,55(2):758-763.MathSciNetView ArticleGoogle Scholar
  15. Burykh S, Abed-Meraim K: Reduced-rank adaptive filtering using Krylov subspace. EURASIP Journal on Applied Signal Processing 2002,2002(12):1387-1400. 10.1155/S1110865702209129MATHGoogle Scholar
  16. Chen W, Mitra U, Schniter P: On the equivalence of three reduced rank linear estimators with applications to DS-CDMA. IEEE Transactions on Information Theory 2002,48(9):2609-2614. 10.1109/TIT.2002.801472MathSciNetView ArticleGoogle Scholar
  17. Xu G, Kailath T: Fast subspace decomposition. IEEE Transactions on Signal Processing 1994,42(3):539-551. 10.1109/78.277846View ArticleGoogle Scholar
  18. Pados DA, Batalama SN: Joint space-time auxiliary-vector filtering for DS/CDMA systems with antenna arrays. IEEE Transactions on Communications 1999,47(9):1406-1415. 10.1109/26.789676View ArticleGoogle Scholar
  19. Pados DA, Karystinos GN: An iterative algorithm for the computation of the MVDR filter. IEEE Transactions on Signal Processing 2001,49(2):290-300. 10.1109/78.902111View ArticleGoogle Scholar
  20. Zhang QT: Probability of resolution of the MUSIC algorithm. IEEE Transactions on Signal Processing 1995,43(4):978-987. 10.1109/78.376849View ArticleGoogle Scholar
  21. Pillai SU, Kwon BH: Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(1):8-15. 10.1109/29.17496View ArticleGoogle Scholar
  22. Qian H, Batalama SN: Data record-based criteria for the selection of an auxiliary vector estimator of the MMSE/MVDR filter. IEEE Transactions on Communications 2003,51(10):1700-1708. 10.1109/TCOMM.2003.818089View ArticleGoogle Scholar
  23. Segovia-Vargas D, Iñigo F, Sierra-Pérez M: Generalized eigenspace beamformer based on CG-Lanczos algorithm. IEEE Transactions on Antennas and Propagation 2003,51(8):2146-2154. 10.1109/TAP.2003.814744View ArticleGoogle Scholar


© Hichem Semira et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.