Skip to main content

Simulating Visual Pattern Detection and Brightness Perception Based on Implicit Masking


A quantitative model of implicit masking, with a front-end low-pass filter, a retinal local compressive nonlinearity described by a modified Naka-Rushton equation, a cortical representation of the image in the Fourier domain, and a frequency-dependent compressive nonlinearity, was developed to simulate visual image processing. The model algorithm was used to estimate contrast sensitivity functions over 7 mean illuminance levels ranging from 0.0009 to 900 trolands, and fit to the contrast thresholds of 43 spatial patterns in the Modelfest study. The RMS errors between model estimations and experimental data in the literature were about 0.1 log unit. In addition, the same model was used to simulate the effects of simultaneous contrast, assimilation, and crispening. The model results matched the visual percepts qualitatively, showing the value of integrating the three diverse perceptual phenomena under a common theoretical framework.


  1. 1.

    Wilson HR, McFarlane DK, Phillips GC: Spatial frequency tuning of orientation selective units estimated by oblique masking. Vision Research 1983,23(9):873–882. 10.1016/0042-6989(83)90055-X

    Article  Google Scholar 

  2. 2.

    Foley JM: Human luminance pattern-vision mechanisms: masking experiments required a new model. Journal of the Optical Society of America A 1994,11(6):1710–1719. 10.1364/JOSAA.11.001710

    Article  Google Scholar 

  3. 3.

    Watson AB, Solomon JA: A model of visual contrast gain control and pattern masking. Journal of the Optical Society of America A 1997,14(9):2379–2391. 10.1364/JOSAA.14.002379

    Article  Google Scholar 

  4. 4.

    Heinemann EG, Chase S: A quantitative model for simultaneous brightness induction. Vision Research 1995,35(14):2007–2020. 10.1016/0042-6989(94)00281-P

    Article  Google Scholar 

  5. 5.

    McCann J: Gestalt vision experiments from an image processing perspective. Proceedings of the Image Processing, Image Quality, Image Capture Systems Conference (PICS '01), April 2001, Montreal, Quebec, Canada 9–14.

    Google Scholar 

  6. 6.

    Yang J: Approaching a unified model of pattern detection and brightness perception. Human Vision and Electronic Imaging VII, January 2002, San Jose, Calif, USA, Proceedings of SPIE 4662: 84–95.

    Article  Google Scholar 

  7. 7.

    Fain GL, Cornwall MC: Light and dark adaptation in vertebrate photoreceptors. In Contrast Sensitivity. Edited by: Shapley R, Lam DM-K. MIT Press, Cambridge, Mass, USA; 1993:3–32.

    Google Scholar 

  8. 8.

    Shapley R, Kaplan E, Purpura K: Contrast sensitivity and light adaptation in photoreceptors in the retinal network. In Contrast Sensitivity. Edited by: Shapley R, Lam DM-K. MIT Press, Cambridge, Mass, USA; 1993:103–116.

    Google Scholar 

  9. 9.

    Graham NVS: Visual Pattern Analyzers. Oxford University Press, New York, NY, USA; 1989.

    Google Scholar 

  10. 10.

    Watson AB: Efficiency of a model human image code. Journal of the Optical Society of America A 1987,4(12):2401–2417. 10.1364/JOSAA.4.002401

    Article  Google Scholar 

  11. 11.

    Peli E: Contrast in complex images. Journal of the Optical Society of America A 1990,7(10):2032–2040. 10.1364/JOSAA.7.002032

    Article  Google Scholar 

  12. 12.

    Peli E: Limitations of image enhancement for the visually impaired. Optometry and Vision Science 1992,69(1):15–24. 10.1097/00006324-199201000-00003

    Article  Google Scholar 

  13. 13.

    Daly S: The visible difference predictor: an algorithm for the assessment of image fidelity. Human Vision, Visual Processing, and Digital Display III, February 1992, San Jose, Calif, USA, Proceedings of SPIE 1666: 2–15.

    Article  Google Scholar 

  14. 14.

    Lubin J: A visual discrimination model for imaging system design and evaluation. In Vision Models for Target Detection and Recognition. Edited by: Peli E. World Scientific, River Edge, NJ, USA; 1995:245–283.

    Google Scholar 

  15. 15.

    Van Nes FL, Bouman MA: Spatial modulation transfer in the human eye. Journal of the Optical Society of America 1967,57(3):401–406. 10.1364/JOSA.57.000401

    Article  Google Scholar 

  16. 16.

    Schade OH: Optical and photoelectric analog of the eye. Journal of the Optical Society of America 1956,46(9):721–739. 10.1364/JOSA.46.000721

    Article  Google Scholar 

  17. 17.

    Campbell FW, Robson JG: Application of Fourier analysis to the visibility of gratings. Journal of Physiology 1968,197(3):551–566.

    Article  Google Scholar 

  18. 18.

    Wandell BA: Foundations of Vision. Sinauer Associates, Sunderland, UK; 1995.

    Google Scholar 

  19. 19.

    Barten PGJ: Physical model for the contrast sensitivity of the human eye. Human Vision, Visual Processing, and Digital Display III, February 1992, San Jose, Calif, USA, Proceedings of SPIE 1666: 57–72.

    Article  Google Scholar 

  20. 20.

    Barten PGJ: Contrast Sensitivity of the Human Eye and Its Effects on Image Quality. SPIE Optical Engineering Press, Bellingham, Wash, USA; 1999.

    Google Scholar 

  21. 21.

    Rovamo J, Mustonen J, Näsänen R: Modelling contrast sensitivity as a function of retinal illuminance and grating area. Vision Research 1994,34(10):1301–1314. 10.1016/0042-6989(94)90204-6

    Article  Google Scholar 

  22. 22.

    Yang J, Makous W: Spatiotemporal separability in contrast sensitivity. Vision Research 1994,34(19):2569–2576. 10.1016/0042-6989(94)90243-7

    Article  Google Scholar 

  23. 23.

    Yang J, Makous W: Modeling pedestal experiments with amplitude instead of contrast. Vision Research 1995,35(14):1979–1989. 10.1016/0042-6989(94)00287-V

    Article  Google Scholar 

  24. 24.

    Yang J, Qi X, Makous W: Zero frequency masking and a model of contrast sensitivity. Vision Research 1995,35(14):1965–1978. 10.1016/0042-6989(94)00285-T

    Article  Google Scholar 

  25. 25.

    Makous WL: Fourier models and the loci of adaptation. Journal of the Optical Society of America A 1997,14(9):2323–2345. 10.1364/JOSAA.14.002323

    Article  Google Scholar 

  26. 26.

    Yang J, Makous W: Implicit masking constrained by spatial inhomogeneities. Vision Research 1997,37(14):1917–1927. 10.1016/S0042-6989(97)00006-0

    Article  Google Scholar 

  27. 27.

    Krauskopf J, Reeves A: Measurement of the effect of photon noise on detection. Vision Research 1980,20(3):193–196. 10.1016/0042-6989(80)90101-7

    Article  Google Scholar 

  28. 28.

    Reeves A, Wu S, Schirillo J: The effect of photon noise on the detection of white flashes. Vision Research 1998,38(5):691–703. 10.1016/S0042-6989(97)00201-0

    Article  Google Scholar 

  29. 29.

    Yang J, Stevenson SB: Post-retinal processing of background luminance. Vision Research 1999,39(24):4045–4051. 10.1016/S0042-6989(99)00116-9

    Article  Google Scholar 

  30. 30.

    Nachmias J, Sansbury RV: Grating contrast: discrimination may be better than detection. Vision Research 1974,14(10):1039–1042. 10.1016/0042-6989(74)90175-8

    Article  Google Scholar 

  31. 31.

    Foley JM, Legge GE: Contrast detection and near-threshold discrimination in human vision. Vision Research 1981,21(7):1041–1053. 10.1016/0042-6989(81)90009-2

    Article  Google Scholar 

  32. 32.

    Legge GE, Foley JM: Contrast masking in human vision. Journal of the Optical Society of America 1980,70(12):1458–1471. 10.1364/JOSA.70.001458

    Article  Google Scholar 

  33. 33.

    Ross J, Speed HD: Contrast adaptation and contrast masking in human vision. Proceedings of the Royal Society of London B: Biological Sciences 1991,246(1315):61–70. 10.1098/rspb.1991.0125

    Article  Google Scholar 

  34. 34.

    Heeger DJ: Normalization of cell responses in cat striate cortex. Visual Neuroscience 1992,9(2):181–197. 10.1017/S0952523800009640

    MathSciNet  Article  Google Scholar 

  35. 35.

    Heeger DJ: The representation of visual stimuli in primary visual cortex. Current Directions in Psychological Science 1994,3(5):159–163. 10.1111/1467-8721.ep10770661

    Article  Google Scholar 

  36. 36.

    Campbell FW, Kulikowski JJ, Levinson J: The effect of orientation on the visual resolution of gratings. Journal of Physiology 1966,187(2):427–436.

    Article  Google Scholar 

  37. 37.

    Yang J, Stevenson SB: Effect of background components on spatial-frequency masking. Journal of the Optical Society of America A 1998,15(5):1027–1035. 10.1364/JOSAA.15.001027

    Article  Google Scholar 

  38. 38.

    Rodieck RW: The Vertebrate Retina. W. H. Freeman, San Francisco, Calif, USA; 1973.

    Google Scholar 

  39. 39.

    MacLeod DIA, Williams DR, Makous W: A visual nonlinearity fed by single cones. Vision Research 1992,32(2):347–363. 10.1016/0042-6989(92)90144-8

    Article  Google Scholar 

  40. 40.

    He S, Macleod DIA: Contrast-modulation flicker: dynamics and spatial resolution of the light adaptation process. Vision Research 1998,38(7):985–1000. 10.1016/S0042-6989(97)00290-3

    Article  Google Scholar 

  41. 41.

    Boynton RM, Whitten DN: Visual adaptation in monkey cones: recordings of late receptor potentials. Science 1970,170(965):1423–1426. 10.1126/science.170.3965.1423

    Article  Google Scholar 

  42. 42.

    Dowling JE: The Retina: An Approachable Part of the Brain. The Belknap Press of Harvard Universiyt Press, Cambridge, Mass, USA; 1987.

    Google Scholar 

  43. 43.

    Shapley R, Lennie P: Spatial frequency analysis in the visual system. Annual Review of Neuroscience 1985, 8: 547–583. 10.1146/

    Article  Google Scholar 

  44. 44.

    De Valois RL, De Valois KK: Spatial Vision. Oxford University Press, New York, NY, USA; 1988.

    Google Scholar 

  45. 45.

    Watson AB, Ahumada AJ Jr.: A standard model for foveal detection of spatial contrast. Journal of Vision 2005,5(9):717–740.

    Article  Google Scholar 

  46. 46.

    Geisler WS: Sequential ideal-observer analysis of visual discriminations. Psychological Review 1989,96(2):267–314.

    Article  Google Scholar 

  47. 47.

    Eckstein MP, Abbey CK, Bochud FO: A practical guide to model observers for visual detection in synthetic and natural noise images. In The Handbook of Medical Imaging, Vol. 1, Progress in Medical Physics and Psychophysics. Edited by: Beutel J, Kundel HL, Van Metter RL. SPIE Press, Bellingham, Wash, USA; 2000:593–628.

    Google Scholar 

  48. 48.

    Carney T, Klein SA, Tyler CW, et al.: The development of an image/threshold database for designing and testing human vision models. Human Vision and Electronic Imaging IV, January 1999, San Jose, Calif, USA, Proceedings of SPIE 3644: 542–551.

    Article  Google Scholar 

  49. 49.

    Hering E: Outlines of a Theory of the Light Sense. Harvard University Press, Cambridge, Mass, USA; 1964.

    Google Scholar 

  50. 50.

    Arend LE, Goldstein R: Lightness models, gradient illusions, and curl. Perception and Psychophysics 1987,42(1):65–80. 10.3758/BF03211515

    Article  Google Scholar 

  51. 51.

    Grossberg S, Todorović D: Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena. Perception and Psychophysics 1988,43(3):241–277. 10.3758/BF03207869

    Article  Google Scholar 

  52. 52.

    Shapley R, Reid RC: Contrast and assimilation in the perception of brightness. Proceedings of the National Academy of Sciences of the United States of America 1985,82(17):5983–5986. 10.1073/pnas.82.17.5983

    Article  Google Scholar 

  53. 53.

    Shimozaki SS, Eckstein MP, Abbey CK: Spatial profiles of local and nonlocal effects upon contrast detection/discrimination from classification images. Journal of Vision 2005,5(1):45–57. 10.1167/5.12.45

    Article  Google Scholar 

  54. 54.

    Takasaki H: Lightness change of grays induced by change in reflectance of gray background. Journal of the Optical Society of America 1966,56(4):504–509. 10.1364/JOSA.56.000504

    Article  Google Scholar 

  55. 55.

    Fairchild MD: Color Appearance Models. Addison-Wesley, Reading, Mass, USA; 1998.

    Google Scholar 

  56. 56.

    Morrone MC, Burr DC: Feature detection in human vision: a phase-dependent energy model. Proceedings of the Royal Society of London B: Biological Sciences 1988,235(1280):221–245. 10.1098/rspb.1988.0073

    Article  Google Scholar 

  57. 57.

    Morrone MC, Burr DC, Ross J: Illusory brightness step in the Chevreul illusion. Vision Research 1994,34(12):1567–1574. 10.1016/0042-6989(94)90113-9

    Article  Google Scholar 

  58. 58.

    McArthur JA, Moulden B: A two-dimensional model of brightness perception based on spatial filtering consistent with retinal processing. Vision Research 1999,39(6):1199–1219. 10.1016/S0042-6989(98)00216-8

    Article  Google Scholar 

  59. 59.

    Blakeslee B, Pasieka W, McCourt ME: Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast. Vision Research 2005,45(5):607–615. 10.1016/j.visres.2004.09.027

    Article  Google Scholar 

  60. 60.

    Dakin SC, Bex PJ: Natural image statistics mediate brightness 'filling in'. Proceedings of the Royal Society of London B: Biological Sciences 2003,270(1531):2341–2348. 10.1098/rspb.2003.2528

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jian Yang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Yang, J. Simulating Visual Pattern Detection and Brightness Perception Based on Implicit Masking. EURASIP J. Adv. Signal Process. 2007, 075402 (2006).

Download citation


  • Assimilation
  • Contrast Sensitivity
  • Sensitivity Function
  • Model Algorithm
  • Fourier Domain