Skip to content

Advertisement

  • Research Article
  • Open Access

Simulating Visual Pattern Detection and Brightness Perception Based on Implicit Masking

EURASIP Journal on Advances in Signal Processing20062007:075402

https://doi.org/10.1155/2007/75402

  • Received: 4 January 2006
  • Accepted: 13 August 2006
  • Published:

Abstract

A quantitative model of implicit masking, with a front-end low-pass filter, a retinal local compressive nonlinearity described by a modified Naka-Rushton equation, a cortical representation of the image in the Fourier domain, and a frequency-dependent compressive nonlinearity, was developed to simulate visual image processing. The model algorithm was used to estimate contrast sensitivity functions over 7 mean illuminance levels ranging from 0.0009 to 900 trolands, and fit to the contrast thresholds of 43 spatial patterns in the Modelfest study. The RMS errors between model estimations and experimental data in the literature were about 0.1 log unit. In addition, the same model was used to simulate the effects of simultaneous contrast, assimilation, and crispening. The model results matched the visual percepts qualitatively, showing the value of integrating the three diverse perceptual phenomena under a common theoretical framework.

Keywords

  • Assimilation
  • Contrast Sensitivity
  • Sensitivity Function
  • Model Algorithm
  • Fourier Domain

Authors’ Affiliations

(1)
Applied Vision Research and Consulting, 6 Royal Birkdale Court, Penfield, NY 14526, USA

References

  1. Wilson HR, McFarlane DK, Phillips GC: Spatial frequency tuning of orientation selective units estimated by oblique masking. Vision Research 1983,23(9):873–882. 10.1016/0042-6989(83)90055-XGoogle Scholar
  2. Foley JM: Human luminance pattern-vision mechanisms: masking experiments required a new model. Journal of the Optical Society of America A 1994,11(6):1710–1719. 10.1364/JOSAA.11.001710Google Scholar
  3. Watson AB, Solomon JA: A model of visual contrast gain control and pattern masking. Journal of the Optical Society of America A 1997,14(9):2379–2391. 10.1364/JOSAA.14.002379Google Scholar
  4. Heinemann EG, Chase S: A quantitative model for simultaneous brightness induction. Vision Research 1995,35(14):2007–2020. 10.1016/0042-6989(94)00281-PGoogle Scholar
  5. McCann J: Gestalt vision experiments from an image processing perspective. Proceedings of the Image Processing, Image Quality, Image Capture Systems Conference (PICS '01), April 2001, Montreal, Quebec, Canada 9–14.Google Scholar
  6. Yang J: Approaching a unified model of pattern detection and brightness perception. Human Vision and Electronic Imaging VII, January 2002, San Jose, Calif, USA, Proceedings of SPIE 4662: 84–95.Google Scholar
  7. Fain GL, Cornwall MC: Light and dark adaptation in vertebrate photoreceptors. In Contrast Sensitivity. Edited by: Shapley R, Lam DM-K. MIT Press, Cambridge, Mass, USA; 1993:3–32.Google Scholar
  8. Shapley R, Kaplan E, Purpura K: Contrast sensitivity and light adaptation in photoreceptors in the retinal network. In Contrast Sensitivity. Edited by: Shapley R, Lam DM-K. MIT Press, Cambridge, Mass, USA; 1993:103–116.Google Scholar
  9. Graham NVS: Visual Pattern Analyzers. Oxford University Press, New York, NY, USA; 1989.Google Scholar
  10. Watson AB: Efficiency of a model human image code. Journal of the Optical Society of America A 1987,4(12):2401–2417. 10.1364/JOSAA.4.002401Google Scholar
  11. Peli E: Contrast in complex images. Journal of the Optical Society of America A 1990,7(10):2032–2040. 10.1364/JOSAA.7.002032Google Scholar
  12. Peli E: Limitations of image enhancement for the visually impaired. Optometry and Vision Science 1992,69(1):15–24. 10.1097/00006324-199201000-00003Google Scholar
  13. Daly S: The visible difference predictor: an algorithm for the assessment of image fidelity. Human Vision, Visual Processing, and Digital Display III, February 1992, San Jose, Calif, USA, Proceedings of SPIE 1666: 2–15.Google Scholar
  14. Lubin J: A visual discrimination model for imaging system design and evaluation. In Vision Models for Target Detection and Recognition. Edited by: Peli E. World Scientific, River Edge, NJ, USA; 1995:245–283.Google Scholar
  15. Van Nes FL, Bouman MA: Spatial modulation transfer in the human eye. Journal of the Optical Society of America 1967,57(3):401–406. 10.1364/JOSA.57.000401Google Scholar
  16. Schade OH: Optical and photoelectric analog of the eye. Journal of the Optical Society of America 1956,46(9):721–739. 10.1364/JOSA.46.000721Google Scholar
  17. Campbell FW, Robson JG: Application of Fourier analysis to the visibility of gratings. Journal of Physiology 1968,197(3):551–566.Google Scholar
  18. Wandell BA: Foundations of Vision. Sinauer Associates, Sunderland, UK; 1995.Google Scholar
  19. Barten PGJ: Physical model for the contrast sensitivity of the human eye. Human Vision, Visual Processing, and Digital Display III, February 1992, San Jose, Calif, USA, Proceedings of SPIE 1666: 57–72.Google Scholar
  20. Barten PGJ: Contrast Sensitivity of the Human Eye and Its Effects on Image Quality. SPIE Optical Engineering Press, Bellingham, Wash, USA; 1999.Google Scholar
  21. Rovamo J, Mustonen J, Näsänen R: Modelling contrast sensitivity as a function of retinal illuminance and grating area. Vision Research 1994,34(10):1301–1314. 10.1016/0042-6989(94)90204-6Google Scholar
  22. Yang J, Makous W: Spatiotemporal separability in contrast sensitivity. Vision Research 1994,34(19):2569–2576. 10.1016/0042-6989(94)90243-7Google Scholar
  23. Yang J, Makous W: Modeling pedestal experiments with amplitude instead of contrast. Vision Research 1995,35(14):1979–1989. 10.1016/0042-6989(94)00287-VGoogle Scholar
  24. Yang J, Qi X, Makous W: Zero frequency masking and a model of contrast sensitivity. Vision Research 1995,35(14):1965–1978. 10.1016/0042-6989(94)00285-TGoogle Scholar
  25. Makous WL: Fourier models and the loci of adaptation. Journal of the Optical Society of America A 1997,14(9):2323–2345. 10.1364/JOSAA.14.002323Google Scholar
  26. Yang J, Makous W: Implicit masking constrained by spatial inhomogeneities. Vision Research 1997,37(14):1917–1927. 10.1016/S0042-6989(97)00006-0Google Scholar
  27. Krauskopf J, Reeves A: Measurement of the effect of photon noise on detection. Vision Research 1980,20(3):193–196. 10.1016/0042-6989(80)90101-7Google Scholar
  28. Reeves A, Wu S, Schirillo J: The effect of photon noise on the detection of white flashes. Vision Research 1998,38(5):691–703. 10.1016/S0042-6989(97)00201-0Google Scholar
  29. Yang J, Stevenson SB: Post-retinal processing of background luminance. Vision Research 1999,39(24):4045–4051. 10.1016/S0042-6989(99)00116-9Google Scholar
  30. Nachmias J, Sansbury RV: Grating contrast: discrimination may be better than detection. Vision Research 1974,14(10):1039–1042. 10.1016/0042-6989(74)90175-8Google Scholar
  31. Foley JM, Legge GE: Contrast detection and near-threshold discrimination in human vision. Vision Research 1981,21(7):1041–1053. 10.1016/0042-6989(81)90009-2Google Scholar
  32. Legge GE, Foley JM: Contrast masking in human vision. Journal of the Optical Society of America 1980,70(12):1458–1471. 10.1364/JOSA.70.001458Google Scholar
  33. Ross J, Speed HD: Contrast adaptation and contrast masking in human vision. Proceedings of the Royal Society of London B: Biological Sciences 1991,246(1315):61–70. 10.1098/rspb.1991.0125Google Scholar
  34. Heeger DJ: Normalization of cell responses in cat striate cortex. Visual Neuroscience 1992,9(2):181–197. 10.1017/S0952523800009640MathSciNetGoogle Scholar
  35. Heeger DJ: The representation of visual stimuli in primary visual cortex. Current Directions in Psychological Science 1994,3(5):159–163. 10.1111/1467-8721.ep10770661Google Scholar
  36. Campbell FW, Kulikowski JJ, Levinson J: The effect of orientation on the visual resolution of gratings. Journal of Physiology 1966,187(2):427–436.Google Scholar
  37. Yang J, Stevenson SB: Effect of background components on spatial-frequency masking. Journal of the Optical Society of America A 1998,15(5):1027–1035. 10.1364/JOSAA.15.001027Google Scholar
  38. Rodieck RW: The Vertebrate Retina. W. H. Freeman, San Francisco, Calif, USA; 1973.Google Scholar
  39. MacLeod DIA, Williams DR, Makous W: A visual nonlinearity fed by single cones. Vision Research 1992,32(2):347–363. 10.1016/0042-6989(92)90144-8Google Scholar
  40. He S, Macleod DIA: Contrast-modulation flicker: dynamics and spatial resolution of the light adaptation process. Vision Research 1998,38(7):985–1000. 10.1016/S0042-6989(97)00290-3Google Scholar
  41. Boynton RM, Whitten DN: Visual adaptation in monkey cones: recordings of late receptor potentials. Science 1970,170(965):1423–1426. 10.1126/science.170.3965.1423Google Scholar
  42. Dowling JE: The Retina: An Approachable Part of the Brain. The Belknap Press of Harvard Universiyt Press, Cambridge, Mass, USA; 1987.Google Scholar
  43. Shapley R, Lennie P: Spatial frequency analysis in the visual system. Annual Review of Neuroscience 1985, 8: 547–583. 10.1146/annurev.ne.08.030185.002555Google Scholar
  44. De Valois RL, De Valois KK: Spatial Vision. Oxford University Press, New York, NY, USA; 1988.MATHGoogle Scholar
  45. Watson AB, Ahumada AJ Jr.: A standard model for foveal detection of spatial contrast. Journal of Vision 2005,5(9):717–740.Google Scholar
  46. Geisler WS: Sequential ideal-observer analysis of visual discriminations. Psychological Review 1989,96(2):267–314.Google Scholar
  47. Eckstein MP, Abbey CK, Bochud FO: A practical guide to model observers for visual detection in synthetic and natural noise images. In The Handbook of Medical Imaging, Vol. 1, Progress in Medical Physics and Psychophysics. Edited by: Beutel J, Kundel HL, Van Metter RL. SPIE Press, Bellingham, Wash, USA; 2000:593–628.Google Scholar
  48. Carney T, Klein SA, Tyler CW, et al.: The development of an image/threshold database for designing and testing human vision models. Human Vision and Electronic Imaging IV, January 1999, San Jose, Calif, USA, Proceedings of SPIE 3644: 542–551.Google Scholar
  49. Hering E: Outlines of a Theory of the Light Sense. Harvard University Press, Cambridge, Mass, USA; 1964.Google Scholar
  50. Arend LE, Goldstein R: Lightness models, gradient illusions, and curl. Perception and Psychophysics 1987,42(1):65–80. 10.3758/BF03211515Google Scholar
  51. Grossberg S, Todorović D: Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena. Perception and Psychophysics 1988,43(3):241–277. 10.3758/BF03207869Google Scholar
  52. Shapley R, Reid RC: Contrast and assimilation in the perception of brightness. Proceedings of the National Academy of Sciences of the United States of America 1985,82(17):5983–5986. 10.1073/pnas.82.17.5983Google Scholar
  53. Shimozaki SS, Eckstein MP, Abbey CK: Spatial profiles of local and nonlocal effects upon contrast detection/discrimination from classification images. Journal of Vision 2005,5(1):45–57. 10.1167/5.12.45Google Scholar
  54. Takasaki H: Lightness change of grays induced by change in reflectance of gray background. Journal of the Optical Society of America 1966,56(4):504–509. 10.1364/JOSA.56.000504Google Scholar
  55. Fairchild MD: Color Appearance Models. Addison-Wesley, Reading, Mass, USA; 1998.Google Scholar
  56. Morrone MC, Burr DC: Feature detection in human vision: a phase-dependent energy model. Proceedings of the Royal Society of London B: Biological Sciences 1988,235(1280):221–245. 10.1098/rspb.1988.0073Google Scholar
  57. Morrone MC, Burr DC, Ross J: Illusory brightness step in the Chevreul illusion. Vision Research 1994,34(12):1567–1574. 10.1016/0042-6989(94)90113-9Google Scholar
  58. McArthur JA, Moulden B: A two-dimensional model of brightness perception based on spatial filtering consistent with retinal processing. Vision Research 1999,39(6):1199–1219. 10.1016/S0042-6989(98)00216-8Google Scholar
  59. Blakeslee B, Pasieka W, McCourt ME: Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast. Vision Research 2005,45(5):607–615. 10.1016/j.visres.2004.09.027Google Scholar
  60. Dakin SC, Bex PJ: Natural image statistics mediate brightness 'filling in'. Proceedings of the Royal Society of London B: Biological Sciences 2003,270(1531):2341–2348. 10.1098/rspb.2003.2528Google Scholar

Copyright

© Yang 2007

Advertisement