Open Access

Tools for Protecting the Privacy of Specific Individuals in Video

EURASIP Journal on Advances in Signal Processing20072007:075427

https://doi.org/10.1155/2007/75427

Received: 25 July 2006

Accepted: 31 October 2006

Published: 9 January 2007

Abstract

This paper presents a system for protecting the privacy of specific individuals in video recordings. We address the following two problems: automatic people identification with limited labeled data, and human body obscuring with preserved structure and motion information. In order to address the first problem, we propose a new discriminative learning algorithm to improve people identification accuracy using limited training data labeled from the original video and imperfect pairwise constraints labeled from face obscured video data. We employ a robust face detection and tracking algorithm to obscure human faces in the video. Our experiments in a nursing home environment show that the system can obtain a high accuracy of people identification using limited labeled data and noisy pairwise constraints. The study result indicates that human subjects can perform reasonably well in labeling pairwise constraints with the face masked data. For the second problem, we propose a novel method of body obscuring, which removes the appearance information of the people while preserving rich structure and motion information. The proposed approach provides a way to minimize the risk of exposing the identities of the protected people while maximizing the use of the captured data for activity/behavior analysis.

[123456789101112131415161718192021222324252627]

Authors’ Affiliations

(1)
School of Computer Science, Carnegie Mellon University

References

  1. Senior A, Pankanti S, Hampapur A, Brown L, Tian Y-L, Ekin A: Blinkering surveillance: enabling video privacy through computer vision . In Tech. Rep. RC22886 (W0308-109). IBM, White Plains, NY, USA; 2003.Google Scholar
  2. Tansuriyavong S, Hanaki S-I: Privacy protection by concealing persons in circumstantial video image. Proceedings of the Workshop on Perceptive User Interfaces (PUI '01), November 2001, Orlando, Fla, USA 1-4.Google Scholar
  3. Brassil J: Using mobile communications to assert privacy from video surveillance. Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS '05), April 2005, Denver, Colo, USA 290.View ArticleGoogle Scholar
  4. Zhang W, Cheung S-CS, Chen M: Hiding privacy information in video surveillance system. Proceedings of International Conference on Image Processing (ICIP '05), September 2005, Genova, Italy 3: 868-871.Google Scholar
  5. Hudson SE, Smith I: Techniques for addressing fundamental privacy and disruption tradeoffs in awareness support systems. Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW '96), November 1996, Boston, Mass, USA 248-257.Google Scholar
  6. Lee A, Girgensohn A, Schlueter K: NYNEX portholes: initial user reactions and redesign implications. Proceedings of the International ACM SIGGROUP Conference on Supporting Group Work (GROUP '97), November 1997, Phoenix, Ariz, USA 385-394.View ArticleGoogle Scholar
  7. Zhao Q, Stasko J: The awareness-privacy tradeoff in video supported informal awareness: a study of image-filtering based techniques. In Tech. Rep. GIT-GVU-98-16. Graphics, Visualization, and Usability Center, Atlanta, Ga, USA; 1998.Google Scholar
  8. Newton EM, Sweeney L, Malin B: Preserving privacy by de-identifying face images. IEEE Transactions on Knowledge and Data Engineering 2005,17(2):232-243.View ArticleGoogle Scholar
  9. Boyle M, Edwards C, Greenberg S: The effects of filtered video on awareness and privacy. Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW '00), December 2000, Philadelphia, Pa, USA 1-10.Google Scholar
  10. Terrillon J-C, Shirazi MN, Fukamachi H, Akamatsu S: Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images. Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition, March 2000, Grenoble, France 54-61.Google Scholar
  11. Chen D, Yang J: Online learning of region confidences for object tracking. Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VS-PETS '05), October 2005, Beijing, China 1-8.Google Scholar
  12. Sung K-K, Poggio T: Example-based learning for view-based human face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998,20(1):39-51. 10.1109/34.655648View ArticleGoogle Scholar
  13. Rowley HA, Baluja S, Kanade T: Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998,20(1):23-38. 10.1109/34.655647View ArticleGoogle Scholar
  14. Osuna E, Freund R, Girosi F: Training support vector machines: an application to face detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '97), June 1997, San Juan, Puerto Rico, USA 130-136.View ArticleGoogle Scholar
  15. Viola P, Jones M: Rapid object detection using a boosted cascade of simple features. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '01), December 2001, Kauai, Hawaii, USA 1: 511-518.Google Scholar
  16. Schneiderman H, Kanade T: A statistical method for 3D object detection applied to faces and cars. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '00), June 2000, Hilton Head Island, SC, USA 1: 746-751.Google Scholar
  17. Gong S, McKenna S, Collins JJ: An investigation into face pose distributions. Proceedings of the 2nd International Conference on Automatic Face and Gesture Recognition, October 1996, Killington, Vt, USA 265-270.View ArticleGoogle Scholar
  18. Hager GD, Toyama K: X vision: a portable substrate for real-time vision applications. Computer Vision and Image Understanding 1998,69(1):23-37. 10.1006/cviu.1997.0586View ArticleGoogle Scholar
  19. Raja Y, McKenna SJ, Gong S: Tracking and segmenting people in varying lighting conditions using colour. Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition, April 1998, Nara, Japan 228-233.View ArticleGoogle Scholar
  20. Schwerdt K, Crowley JL: Robust face tracking using color. Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition, March 2000, Grenoble, France 90-95.Google Scholar
  21. Wren CR, Azarbayejani A, Darrell T, Pentland AP: Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997,19(7):780-785. 10.1109/34.598236View ArticleGoogle Scholar
  22. Gelb A (Ed): Applied Optimal Estimation. MIT Press, Cambridge, Mass, USA; 1992.Google Scholar
  23. Elgammal A, Duraiswami R, Harwood D, Davis LS: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE 2002,90(7):1151-1163. 10.1109/JPROC.2002.801448View ArticleGoogle Scholar
  24. Yan R, Zhang J, Yang J, Hauptmann A: A discriminative learning framework with pairwise constraints for video object classification. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), June-July 2004, Washington, DC, USA 2: 284-293.Google Scholar
  25. Kimeldorf G, Wahba G: Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and Applications 1971,33(1):82-95. 10.1016/0022-247X(71)90184-3MathSciNetView ArticleMATHGoogle Scholar
  26. Hodgins JK, O'Brien JF, Tumblin J: Perception of human motion with different geometric models. IEEE Transactions on Visualization and Computer Graphics 1998,4(4):307-316. 10.1109/2945.765325View ArticleGoogle Scholar
  27. Davis JW, Bobick AF: The representation and recognition of human movement using temporal templates. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '97), June 1997, San Juan, Puerto Rico, USA 928-934.View ArticleGoogle Scholar

Copyright

© Datong Chen et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.