Skip to main content


LDPC Code Design for Nonuniform Power-Line Channels

Article metrics

  • 952 Accesses

  • 4 Citations


We investigate low-density parity-check code design for discrete multitone channels over power lines. Discrete multitone channels are well modeled as nonuniform channels, that is, different bits experience various channel parameters. We propose a coding system for discrete multitone channels that allows for using a single code over a nonuniform channel. The number of code parameters for the proposed system is much greater than the number of code parameters in conventional channel. Therefore, search-based optimization methods are impractical. We first formulate the problem of optimizing the rate of an irregular low-density parity-check code, with guaranteed convergence over a general nonuniform channel, as an iterative linear programming which is significantly more efficient than search-based methods. Then we use this technique for a typical power-line channel. The methodology of this paper is directly applicable to all decoding algorithms for which a density evolution analysis is possible.


  1. 1.

    Eleftheriou E, Ölçer S: Low-density parity-check codes for digital subscriber lines. Proceedings of IEEE International Conference on Communications (ICC '02), April-May 2002, New York, NY, USA 3: 1752–1757.

  2. 2.

    Zogakis TN, Aslanis JT Jr., Cioffi JM: Analysis of a concatenated coding scheme for a discrete multitone modulation system. Proceedings of IEEE Military Communications Conference (MILCOM '94), October 1994, Fort Monmouth, NJ, USA 2: 433–437.

  3. 3.

    Zhang L, Yongacoglu A: Turbo coding in ADSL DMT systems. Proceedings of IEEE International Conference on Communications (ICC '01), June 2001, Helsinki, Finland 1: 151–155.

  4. 4.

    Cai Z, Subramanian KR, Zhang L: DMT scheme with multidimensional turbo trellis code. Electronics Letters 2000,36(4):334-335. 10.1049/el:20000259

  5. 5.

    Ardakani M, Esmailian T, Kschischang FR: Near-capacity coding in multicarrier modulation systems. IEEE Transactions on Communications 2004,52(11):1880-1889. 10.1109/TCOMM.2004.836560

  6. 6.

    Pishro-Nik H, Rahnavard N, Fekri F: Nonuniform error correction using low-density parity-check codes. IEEE Transactions on Information Theory 2005,51(7):2702-2714. 10.1109/TIT.2005.850230

  7. 7.

    Richardson TJ, Shokrollahi MA, Urbanke RL: Design of capacity-approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory 2001,47(2):619-637. 10.1109/18.910578

  8. 8.

    Roumy A, Guemghar S, Caire G, Verdú S: Design methods for irregular repeat-accumulate codes. IEEE Transactions on Information Theory 2004,50(8):1711-1727. 10.1109/TIT.2004.831778

  9. 9.

    Ardakani M, Kschischang FR: A more accurate one-dimensional analysis and design of irregular LDPC codes. IEEE Transactions on Communications 2004,52(12):2106-2114. 10.1109/TCOMM.2004.838718

  10. 10.

    Gallager RG: Low-Density Parity-Check Codes. The MIT Press, Cambridge, Mass, USA; 1963.

  11. 11.

    Shokrollahi A: New sequence of linear time erasure codes approaching the channel capacity. Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC '99), November 1999, Honolulu, Hawaii, USA, Lecture Notes in Computer Science 1719: 65–67.

  12. 12.

    Chung S-Y, Forney GD Jr., Richardson TJ, Urbanke R: On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications Letters 2001,5(2):58-60. 10.1109/4234.905935

  13. 13.

    Luby MG, Mitzenmacher M, Shokrollahi MA, Spielman DA: Improved low-density parity-check codes using irregular graphs. IEEE Transactions on Information Theory 2001,47(2):585-598. 10.1109/18.910576

  14. 14.

    Tanner RM: A recursive approach to low complexity codes. IEEE Transactions on Information Theory 1981,27(5):533-547. 10.1109/TIT.1981.1056404

  15. 15.

    Kschischang FR, Frey BJ, Loeliger H-A: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 2001,47(2):498-519. 10.1109/18.910572

  16. 16.

    Richardson TJ, Urbanke RL: The capacity of low-density parity-check codes under message-passing decoding. IEEE Transactions on Information Theory 2001,47(2):599-618. 10.1109/18.910577

  17. 17.

    ten Brink S, Kramer G, Ashikhmin A: Design of low-density parity-check codes for modulation and detection. IEEE Transactions on Communications 2004,52(4):670-678. 10.1109/TCOMM.2004.826370

  18. 18.

    Mannoni V, Declereq D, Gelle G: Optimized irregular Gallager codes for OFDM transmission. Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Conference (PIMRC '02), September 2002, Lisboa, Portugal 1: 222–226.

  19. 19.

    de Baynast A, Sabharwal A, Aazhang B: LDPC code design for OFDM channel: graph connectivity and information bits positioning. Proceedings of International Symposium on Signals, Circuits and Systems (ISSCS '05), July 2005, Iasi, Romania 2: 649–652.

  20. 20.

    Imai H, Hirakawa S: A new multilevel coding method using error-correcting codes. IEEE Transactions on Information Theory 1977,23(3):371-377. 10.1109/TIT.1977.1055718

  21. 21.

    Wachsmann U, Fischer RFH, Huber JB: Multilevel codes: theoretical concepts and practical design rules. IEEE Transactions on Information Theory 1999,45(5):1361-1391. 10.1109/18.771140

  22. 22.

    Ungerboeck G: Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory 1982,28(1):55-67. 10.1109/TIT.1982.1056454

  23. 23.

    Caire G, Taricco G, Biglieri E: Bit-interleaved coded modulation. IEEE Transactions on Information Theory 1998,44(3):927-946. 10.1109/18.669123

  24. 24.

    Hou J, Siegel PH, Milstein LB, Pfister HD: Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes. IEEE Transactions on Information Theory 2003,49(9):2141-2155. 10.1109/TIT.2003.815777

  25. 25.

    Chung S-Y, Richardson TJ, Urbanke RL: Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Transactions on Information Theory 2001,47(2):657-670. 10.1109/18.910580

  26. 26.

    Ardakani M, Smith B, Yu W, Kschischang F: Complexity-optimized low-density parity-check codes. In Proceedings of the 43rd Annual Allerton Conference on Communication, Control, and Computing, September 2005, Monticello, Ill, USA. Allerton House;

  27. 27.

    Esmailian T, Kschischang FR, Gulak PG: In-building power lines as high-speed communication channels: channel characterization and a test channel ensemble. International Journal of Communication Systems 2003,16(5):381-400. 10.1002/dac.596

Download references

Author information

Correspondence to Ali Sanaei.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Sanaei, A., Ardakani, M. LDPC Code Design for Nonuniform Power-Line Channels. EURASIP J. Adv. Signal Process. 2007, 076146 (2007) doi:10.1155/2007/76146

Download citation


  • Power Line
  • Code Design
  • LDPC Code
  • Channel Parameter
  • Density Evolution