Skip to main content

Locally Regularized Smoothing B-Snake


We propose a locally regularized snake based on smoothing-spline filtering. The proposed algorithm associates a regularization process with a force equilibrium scheme leading the snake's deformation. In this algorithm, the regularization is implemented with a smoothing of the deformation forces. The regularization level is controlled through a unique parameter that can vary along the contour. It provides a locally regularized smoothing B-snake that offers a powerful framework to introduce prior knowledge. We illustrate the snake behavior on synthetic and real images, with global and local regularization.


  1. 1.

    Kass M, Witkin A, Terzopoulos D: Snakes: active contour models. Proceedings of the 1st International Conference on Computer Vision, June 1987, London, UK 259–268.

    Google Scholar 

  2. 2.

    Menet S, Saint-Marc P, Medioni G: B-snakes: implementation and application to stereo. Proceedings of Image Understanding Workshop, September 1990, Pittsburgh, Pa, USA 720–726.

    Google Scholar 

  3. 3.

    Cohen LD, Cohen I: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1993,15(11):1131-1147. 10.1109/34.244675

    Article  Google Scholar 

  4. 4.

    Xu C, Prince JL: Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 1998,7(3):359-369. 10.1109/83.661186

    MathSciNet  Article  Google Scholar 

  5. 5.

    Wang M, Evans J, Hassebrook L, Knapp C: A multistage, optimal active contour model. IEEE Transactions on Image Processing 1996,5(11):1586-1591. 10.1109/83.541430

    Article  Google Scholar 

  6. 6.

    Brigger P, Hoeg J, Unser M: B-spline snakes: a flexible tool for parametric contour detection. IEEE Transactions on Image Processing 2000,9(9):1484-1496. 10.1109/83.862624

    MathSciNet  Article  Google Scholar 

  7. 7.

    Brigger P, Unser M: Multi-scale B-spline snakes for general contour detection. Wavelet Applications in Signal and Image Processing VI, July 1998, San Diego, Calif, USA, Proceedings of SPIE 3458: 92–102.

    Article  Google Scholar 

  8. 8.

    Precioso F, Barlaud M, Blu T, Unser M: Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm. IEEE Transactions on Image Processing 2005,14(7):910-924.

    Article  Google Scholar 

  9. 9.

    Reinsch CH: Smoothing by spline functions. Numerische Mathematik 1967,10(3):177-183. 10.1007/BF02162161

    MathSciNet  Article  Google Scholar 

  10. 10.

    Unser M, Aldroubi A, Eden M: B-spline signal processing—part I. Theory. IEEE Transactions on Signal Processing 1993,41(2):821-833. 10.1109/78.193220

    Article  Google Scholar 

  11. 11.

    Jacob M, Blu T, Unser M: Efficient energies and algorithms for parametric snakes. IEEE Transactions on Image Processing 2004,13(9):1231-1244. 10.1109/TIP.2004.832919

    Article  Google Scholar 

  12. 12.

    Flickner M, Sawhney H, Pryor D, Lotspiech J: Intelligent interactive image outlining using spline snakes. Proceedings of the 28th Asilomar Conference on Signals, Systems and Computers, October-November 1994, Pacific Grove, Calif, USA 1: 731–735.

    Google Scholar 

  13. 13.

    Unser M, Aldroubi A, Eden M: B-spline signal processing—part II. Efficient design and applications. IEEE Transactions on Signal Processing 1993,41(2):834-848. 10.1109/78.193221

    Article  Google Scholar 

  14. 14.

    Weruaga L, Verdú R, Morales J: Frequency domain formulation of active parametric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004,26(12):1568-1578. 10.1109/TPAMI.2004.124

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jérôme Velut.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Velut, J., Benoit-Cattin, H. & Odet, C. Locally Regularized Smoothing B-Snake. EURASIP J. Adv. Signal Process. 2007, 076241 (2007).

Download citation


  • Information Technology
  • Prior Knowledge
  • Quantum Information
  • Real Image
  • Equilibrium Scheme