Skip to content


  • Research Article
  • Open Access

Locally Regularized Smoothing B-Snake

EURASIP Journal on Advances in Signal Processing20072007:076241

  • Received: 22 July 2005
  • Accepted: 17 December 2006
  • Published:


We propose a locally regularized snake based on smoothing-spline filtering. The proposed algorithm associates a regularization process with a force equilibrium scheme leading the snake's deformation. In this algorithm, the regularization is implemented with a smoothing of the deformation forces. The regularization level is controlled through a unique parameter that can vary along the contour. It provides a locally regularized smoothing B-snake that offers a powerful framework to introduce prior knowledge. We illustrate the snake behavior on synthetic and real images, with global and local regularization.


  • Information Technology
  • Prior Knowledge
  • Quantum Information
  • Real Image
  • Equilibrium Scheme


Authors’ Affiliations

CREATIS, CNRS UMR 5220, Inserm U 630, INSA, Bâtiment Blaise Pascal, Villeurbanne, 69621, France


  1. Kass M, Witkin A, Terzopoulos D: Snakes: active contour models. Proceedings of the 1st International Conference on Computer Vision, June 1987, London, UK 259-268.Google Scholar
  2. Menet S, Saint-Marc P, Medioni G: B-snakes: implementation and application to stereo. Proceedings of Image Understanding Workshop, September 1990, Pittsburgh, Pa, USA 720-726.Google Scholar
  3. Cohen LD, Cohen I: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1993,15(11):1131-1147. 10.1109/34.244675View ArticleGoogle Scholar
  4. Xu C, Prince JL: Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 1998,7(3):359-369. 10.1109/83.661186MathSciNetView ArticleMATHGoogle Scholar
  5. Wang M, Evans J, Hassebrook L, Knapp C: A multistage, optimal active contour model. IEEE Transactions on Image Processing 1996,5(11):1586-1591. 10.1109/83.541430View ArticleGoogle Scholar
  6. Brigger P, Hoeg J, Unser M: B-spline snakes: a flexible tool for parametric contour detection. IEEE Transactions on Image Processing 2000,9(9):1484-1496. 10.1109/83.862624MathSciNetView ArticleMATHGoogle Scholar
  7. Brigger P, Unser M: Multi-scale B-spline snakes for general contour detection. Wavelet Applications in Signal and Image Processing VI, July 1998, San Diego, Calif, USA, Proceedings of SPIE 3458: 92-102.View ArticleGoogle Scholar
  8. Precioso F, Barlaud M, Blu T, Unser M: Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm. IEEE Transactions on Image Processing 2005,14(7):910-924.View ArticleGoogle Scholar
  9. Reinsch CH: Smoothing by spline functions. Numerische Mathematik 1967,10(3):177-183. 10.1007/BF02162161MathSciNetView ArticleMATHGoogle Scholar
  10. Unser M, Aldroubi A, Eden M: B-spline signal processing—part I. Theory. IEEE Transactions on Signal Processing 1993,41(2):821-833. 10.1109/78.193220View ArticleMATHGoogle Scholar
  11. Jacob M, Blu T, Unser M: Efficient energies and algorithms for parametric snakes. IEEE Transactions on Image Processing 2004,13(9):1231-1244. 10.1109/TIP.2004.832919View ArticleGoogle Scholar
  12. Flickner M, Sawhney H, Pryor D, Lotspiech J: Intelligent interactive image outlining using spline snakes. Proceedings of the 28th Asilomar Conference on Signals, Systems and Computers, October-November 1994, Pacific Grove, Calif, USA 1: 731-735.Google Scholar
  13. Unser M, Aldroubi A, Eden M: B-spline signal processing—part II. Efficient design and applications. IEEE Transactions on Signal Processing 1993,41(2):834-848. 10.1109/78.193221View ArticleMATHGoogle Scholar
  14. Weruaga L, Verdú R, Morales J: Frequency domain formulation of active parametric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004,26(12):1568-1578. 10.1109/TPAMI.2004.124View ArticleGoogle Scholar