Skip to main content

Locally Regularized Smoothing B-Snake

Abstract

We propose a locally regularized snake based on smoothing-spline filtering. The proposed algorithm associates a regularization process with a force equilibrium scheme leading the snake's deformation. In this algorithm, the regularization is implemented with a smoothing of the deformation forces. The regularization level is controlled through a unique parameter that can vary along the contour. It provides a locally regularized smoothing B-snake that offers a powerful framework to introduce prior knowledge. We illustrate the snake behavior on synthetic and real images, with global and local regularization.

References

  1. 1.

    Kass M, Witkin A, Terzopoulos D: Snakes: active contour models. Proceedings of the 1st International Conference on Computer Vision, June 1987, London, UK 259–268.

    Google Scholar 

  2. 2.

    Menet S, Saint-Marc P, Medioni G: B-snakes: implementation and application to stereo. Proceedings of Image Understanding Workshop, September 1990, Pittsburgh, Pa, USA 720–726.

    Google Scholar 

  3. 3.

    Cohen LD, Cohen I: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1993,15(11):1131-1147. 10.1109/34.244675

    Article  Google Scholar 

  4. 4.

    Xu C, Prince JL: Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 1998,7(3):359-369. 10.1109/83.661186

    MathSciNet  Article  Google Scholar 

  5. 5.

    Wang M, Evans J, Hassebrook L, Knapp C: A multistage, optimal active contour model. IEEE Transactions on Image Processing 1996,5(11):1586-1591. 10.1109/83.541430

    Article  Google Scholar 

  6. 6.

    Brigger P, Hoeg J, Unser M: B-spline snakes: a flexible tool for parametric contour detection. IEEE Transactions on Image Processing 2000,9(9):1484-1496. 10.1109/83.862624

    MathSciNet  Article  Google Scholar 

  7. 7.

    Brigger P, Unser M: Multi-scale B-spline snakes for general contour detection. Wavelet Applications in Signal and Image Processing VI, July 1998, San Diego, Calif, USA, Proceedings of SPIE 3458: 92–102.

    Article  Google Scholar 

  8. 8.

    Precioso F, Barlaud M, Blu T, Unser M: Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm. IEEE Transactions on Image Processing 2005,14(7):910-924.

    Article  Google Scholar 

  9. 9.

    Reinsch CH: Smoothing by spline functions. Numerische Mathematik 1967,10(3):177-183. 10.1007/BF02162161

    MathSciNet  Article  Google Scholar 

  10. 10.

    Unser M, Aldroubi A, Eden M: B-spline signal processing—part I. Theory. IEEE Transactions on Signal Processing 1993,41(2):821-833. 10.1109/78.193220

    Article  Google Scholar 

  11. 11.

    Jacob M, Blu T, Unser M: Efficient energies and algorithms for parametric snakes. IEEE Transactions on Image Processing 2004,13(9):1231-1244. 10.1109/TIP.2004.832919

    Article  Google Scholar 

  12. 12.

    Flickner M, Sawhney H, Pryor D, Lotspiech J: Intelligent interactive image outlining using spline snakes. Proceedings of the 28th Asilomar Conference on Signals, Systems and Computers, October-November 1994, Pacific Grove, Calif, USA 1: 731–735.

    Google Scholar 

  13. 13.

    Unser M, Aldroubi A, Eden M: B-spline signal processing—part II. Efficient design and applications. IEEE Transactions on Signal Processing 1993,41(2):834-848. 10.1109/78.193221

    Article  Google Scholar 

  14. 14.

    Weruaga L, Verdú R, Morales J: Frequency domain formulation of active parametric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004,26(12):1568-1578. 10.1109/TPAMI.2004.124

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jérôme Velut.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Velut, J., Benoit-Cattin, H. & Odet, C. Locally Regularized Smoothing B-Snake. EURASIP J. Adv. Signal Process. 2007, 076241 (2007). https://doi.org/10.1155/2007/76241

Download citation

Keywords

  • Information Technology
  • Prior Knowledge
  • Quantum Information
  • Real Image
  • Equilibrium Scheme