Open Access

A Joint Optimization Criterion for Blind DS-CDMA Detection

EURASIP Journal on Advances in Signal Processing20062007:079248

Received: 30 September 2005

Accepted: 11 June 2006

Published: 7 September 2006


This paper addresses the problem of the blind detection of a desired user in an asynchronous DS-CDMA communications system with multipath propagation channels. Starting from the inverse filter criterion introduced by Tugnait and Li in 2001, we propose to tackle the problem in the context of the blind signal extraction methods for ICA. In order to improve the performance of the detector, we present a criterion based on the joint optimization of several higher-order statistics of the outputs. An algorithm that optimizes the proposed criterion is described, and its improved performance and robustness with respect to the near-far problem are corroborated through simulations. Additionally, a simulation using measurements on a real software-radio platform at 5 GHz has also been performed.


Communication SystemImprove PerformanceQuantum InformationOptimization CriterionPropagation Channel


Authors’ Affiliations

Departamento de Teoría de la Señal y Comunicaciones, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Sevilla, Spain


  1. Tugnait JK, Li T: Blind detection of asynchronous CDMA signals in multipath channels using code-constrained inverse filter criterion. IEEE Transactions on Signal Processing 2001,49(7):1300-1309. 10.1109/78.928685View ArticleGoogle Scholar
  2. Wang X, Poor HV: Blind equalization and multiuser detection in dispersive CDMA channels. IEEE Transactions on Communications 1998,46(1):91-103. 10.1109/26.655407View ArticleGoogle Scholar
  3. Madhow U: Blind adaptive interference suppression for direct-sequence CDMA. Proceedings of the IEEE 1998,86(10):2049-2069. 10.1109/5.720252View ArticleGoogle Scholar
  4. Verdú S: Multiuser Detection. 1st edition. Cambridge University Press, New York, NY, USA; 1998.MATHGoogle Scholar
  5. Honig M, Tsatsanis MK: Adaptive techniques for multiuser CDMA receivers. IEEE Signal Processing Magazine 2000,17(3):49-61. 10.1109/79.841725View ArticleGoogle Scholar
  6. Prasad R, Ojanperä T: An overview of CDMA evolution toward wideband CDMA. IEEE Communications Surveys 1998,1(1):2-29.View ArticleGoogle Scholar
  7. Moshavi S: Multi-user detection for DS-CDMA communications. IEEE Communications Magazine 1996,34(10):124-136. 10.1109/35.544334View ArticleGoogle Scholar
  8. Gesbert D, Sorelius J, Stoica P, Paulraj A: Blind multiuser MMSE detector for CDMA signals in ISI channels. IEEE Communications Letters 1999,3(8):233-235. 10.1109/4234.781005View ArticleGoogle Scholar
  9. Schniter P, Johnson CR: Minimum-entropy blind acquisition/equalization for uplink DS-CDMA. Allerton Conference on Communication, Control, and Computing, September 1998, Monticello, Ill, USAGoogle Scholar
  10. Castaing J, De Lathauwer L: An algebraic technique for the blind separation of DS-CDMA signals. Proceedings of the 12th European Signal Processing Conference (EUSIPCO '04), September 2004, Vienna, Austria 377-380.Google Scholar
  11. Tugnait JK, Ma J: Blind multiuser receiver for space-time coded CDMA signals in frequency-selective channels. IEEE Transactions on Wireless Communications 2004,3(5):1770-1780. 10.1109/TWC.2004.833464View ArticleGoogle Scholar
  12. Sirbu M, Koivunen V: Multichannel estimation and equalization algorithm for asynchronous uplink DS/CDMA. Wireless Personal Communications 2003,26(1):33-52. 10.1023/A:1025378901359View ArticleGoogle Scholar
  13. Chi C-Y, Chen C-H: Cumulant-based inverse filter criteria for MIMO blind deconvolution: properties, algorithms, and application to DS/CDMA systems in multipath. IEEE Transactions on Signal Processing 2001,49(7):1282-1299. 10.1109/78.928684View ArticleGoogle Scholar
  14. Ristaniemi T, Joutsensalo J: Advanced ICA-based receivers for block fading DS-CDMA channels. Signal Processing 2002,82(3):417-431. 10.1016/S0165-1684(01)00194-3View ArticleMATHGoogle Scholar
  15. Moreau E: A generalization of joint-diagonalization criteria for source separation. IEEE Transactions on Signal Processing 2001,49(3):530-541. 10.1109/78.905873View ArticleGoogle Scholar
  16. Durán-Díaz I, Cruces-Alvarez SA: An application of ICA to blind DS-CDMA detection: a joint optimization criterion. Proceedings of 7th International Work-Conference on Artificial and Natural Neural Networks (IWANN '03), June 2003, Menorca, Spain 2: 305-312.Google Scholar
  17. Comon P: Contrasts, independent component analysis, and blind deconvolution. International Journal of Adaptive Control and Signal Processing 2004,18(3):225-243. 10.1002/acs.791View ArticleMATHGoogle Scholar
  18. Reina J, Durán-Díaz I, Crespo C: Caracterización de circuitos para plataforma de comunicaciones móviles a 5 GHz. Actas del XVIII Simposium Nacional de la Unión Científica Internacional de Radio (URSI '03). Simposium Nacional de la Unión Científica Internacional de Radio, September 2003, A Coruña, Spain 108-109.Google Scholar
  19. Leus G, Moonen M: MUI-free receiver for a synchronous DS-CDMA system based on block spreading in the presence of frequency-selective fading. IEEE Transactions on Signal Processing 2000,48(11):3175-3188. 10.1109/78.875474View ArticleGoogle Scholar
  20. Chi C-Y, Chen C-H, Chen C-Y: Blind MAI and ISI suppression for DS/CDMA systems using HOS-based inverse filter criteria. IEEE Transactions on Signal Processing 2002,50(6):1368-1381. 10.1109/TSP.2002.1003061MathSciNetView ArticleGoogle Scholar
  21. Shalvi O, Weinstein E: New criteria for blind deconvolution of nonminimum phase systems (channels). IEEE Transactions on Information Theory 1990,36(2):312-321. 10.1109/18.52478MathSciNetView ArticleMATHGoogle Scholar
  22. De Lathauwer L, Comon P, De Moor B, Vandewalle J: Higher-order power method - application in independent component analysis. Proceedings of the International Symposium on Nonlinear Theory and Its Applications (NOLTA '95), December 1995, Las Vegas, Nev, USA 91-96.Google Scholar
  23. Cruces-Alvarez SA, Cichocki A, De Lathauwer L: Thin QR and SVD factorizations for simultaneous blind signal extraction. Proceedings of 12th European Signal Processing Conference (EUSIPCO '04), September 2004, Vienna, Austria 217-220.Google Scholar
  24. Kofidis E, Regalia PA: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM Journal on Matrix Analysis and Applications 2002,23(3):863-884. 10.1137/S0895479801387413MathSciNetView ArticleMATHGoogle Scholar
  25. Nikias CL, Petropulu AP: Higher-Order Spectra Analysis. A Nonlinear Signal Processing Framework. Prentice-Hall, Englewood Cliffs, NJ, USA; 1993.MATHGoogle Scholar


© I. Durán-Díaz and S. A. Cruces-Alvarez 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.