Skip to main content

Application of the Evidence Procedure to the Estimation of Wireless Channels

Abstract

We address the application of the Bayesian evidence procedure to the estimation of wireless channels. The proposed scheme is based on relevance vector machines (RVM) originally proposed by M. Tipping. RVMs allow to estimate channel parameters as well as to assess the number of multipath components constituting the channel within the Bayesian framework by locally maximizing the evidence integral. We show that, in the case of channel sounding using pulse-compression techniques, it is possible to cast the channel model as a general linear model, thus allowing RVM methods to be applied. We extend the original RVM algorithm to the multiple-observation/multiple-sensor scenario by proposing a new graphical model to represent multipath components. Through the analysis of the evidence procedure we develop a thresholding algorithm that is used in estimating the number of components. We also discuss the relationship of the evidence procedure to the standard minimum description length (MDL) criterion. We show that the maximum of the evidence corresponds to the minimum of the MDL criterion. The applicability of the proposed scheme is demonstrated with synthetic as well as real-world channel measurements, and a performance increase over the conventional MDL criterion applied to maximum-likelihood estimates of the channel parameters is observed.

References

  1. 1.

    Krim H, Viberg M: Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine 1996,13(4):67-94. 10.1109/79.526899

    Article  Google Scholar 

  2. 2.

    Fleury BH, Tschudin M, Heddergott R, Dahlhaus D, Pedersen KI: Channel parameter estimation in mobile radio environments using the SAGE algorithm. IEEE Journal on Selected Areas in Communications 1999,17(3):434-450. 10.1109/49.753729

    Article  Google Scholar 

  3. 3.

    Duda RO, Hart PE, Stork DG: Pattern Classification. 2nd edition. John Wiley & Sons, New York, NY, USA; 2000.

    Google Scholar 

  4. 4.

    Wax M, Kailath T: Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing 1985,33(2):387-392. 10.1109/TASSP.1985.1164557

    MathSciNet  Article  Google Scholar 

  5. 5.

    Rissanen J: Modelling by the shortest data description. Automatica 1978,14(5):465-471. 10.1016/0005-1098(78)90005-5

    Article  Google Scholar 

  6. 6.

    Haykin S (Ed): Kalman Filtering and Neural Networks. John Wiley & Sons, New York, NY, USA; 2001.

    Google Scholar 

  7. 7.

    Feder M, Weinstein E: Parameter estimation of superimposed signals using the EM algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing 1988,36(4):477-489. 10.1109/29.1552

    Article  Google Scholar 

  8. 8.

    MacKay DJ: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge, UK; 2003.

    Google Scholar 

  9. 9.

    Fitzgerald WJ: The Bayesian approach to signal modelling. IEE Colloquium on Non-Linear Signal and Image Processing (Ref. No. 1998/284), May 1998, London, UK 9/1-9/5.

    Google Scholar 

  10. 10.

    Schwarz G: Estimating the dimension of a model. Annals of Statistics 1978,6(2):461-464. 10.1214/aos/1176344136

    MathSciNet  Article  Google Scholar 

  11. 11.

    Rissanen JJ: Fisher information and stochastic complexity. IEEE Transactions on Information Theory 1996,42(1):40-47. 10.1109/18.481776

    MathSciNet  Article  Google Scholar 

  12. 12.

    Lanterman AD: Schwarz, Wallace, and Rissanen: intertwining themes in theories of model selection. International Statistical Review 2001,69(2):185-212.

    Article  Google Scholar 

  13. 13.

    MacKay DJC: Bayesian interpolation. Neural Computation 1992,4(3):415-447. 10.1162/neco.1992.4.3.415

    Article  Google Scholar 

  14. 14.

    MacKay DJC: Bayesian methods for backpropagation networks. In Models of Neural Networks III. Edited by: Domany E, van Hemmen JL, Schulten K. Springer, New York, NY, USA; 1994:211-254. chapter 6

    Google Scholar 

  15. 15.

    Tipping ME: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 2001,1(3):211-244.

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Rappaport TS: Wireless Communications: Principles and Practice. Prentice Hall PTR, Saddle River, NJ, USA; 2002.

    Google Scholar 

  17. 17.

    Heckerman D: A tutorial on learning with Bayesian networks. In Tech. Rep. MSR-TR-95-06. Microsoft Research, Advanced Technology Division, One Microsoft Way, Redmond, Wash, USA; 1995.

    Google Scholar 

  18. 18.

    Neal R: Bayesian Learning for Neural Networks, Lecture Notes in Statistics. Volume 118. Springer, New York, NY, USA; 1996.

    Google Scholar 

  19. 19.

    Berger O: Statistical Decision Theory and Bayesian Analysis. 2nd edition. Springer, New York, NY, USA; 1985.

    Google Scholar 

  20. 20.

    Grünwald P: A tutorial introduction to the minimum description length principle. In Advances in Minimum Description Length: Theory and Applications, 2005, Cambridge, Mass, USA. Edited by: Grünwald P, Myung I, Pitt M. MIT Press; 80 pages.

    Google Scholar 

  21. 21.

    Barron A, Rissanen J, Yu B: The minimum description length principle in coding and modeling. IEEE Transactions on Information Theory 1998,44(6):2743-2760. 10.1109/18.720554

    MathSciNet  Article  Google Scholar 

  22. 22.

    Faul AC, Tipping ME: Analysis of sparse Bayesian learning. In Advances in Neural Information Processing Systems (NIPS '01), December 2002, Vancouver, British Columbia, Canada. Volume 14. Edited by: Dietterich TG, Becker S, Ghahramani Z. MIT Press; 383–389.

    Google Scholar 

  23. 23.

    Conradsen K, Nielsen A, Schou J, Skriver H: A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing 2003,41(1):4-19. 10.1109/TGRS.2002.808066

    Article  Google Scholar 

  24. 24.

    Goodman NR: Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). The Annals of Mathematical Statistics 1963,34(1):152-177. 10.1214/aoms/1177704250

    MathSciNet  Article  Google Scholar 

  25. 25.

    Evans M, Hastings N, Peacock B: Statistical Distributions. 3rd edition. John Wiley & Sons, New York, NY, USA; 2000.

    Google Scholar 

  26. 26.

    Abramowitz M, Stegun IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, NY, USA; 1972.

    Google Scholar 

  27. 27.

    Laakso TI, Välimäki V, Karjalainen M, Laine UK: Splitting the unit delay [FIR/all pass filters design]. IEEE Signal Processing Magazine 1996,13(1):30-60. 10.1109/79.482137

    Article  Google Scholar 

  28. 28.

    Golub GH, van Loan CF: Matrix Computations. The Johns Hopkins University Press, Baltimore, Md, USA; 1996.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Shutin.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Shutin, D., Kubin, G. & Fleury, B.H. Application of the Evidence Procedure to the Estimation of Wireless Channels. EURASIP J. Adv. Signal Process. 2007, 079821 (2007). https://doi.org/10.1155/2007/79821

Download citation

Keywords

  • General Linear Model
  • Graphical Model
  • Channel Model
  • Wireless Channel
  • Bayesian Framework