Skip to content


  • Research Article
  • Open Access

An Adaptive Constraint Method for Paraunitary Filter Banks with Applications to Spatiotemporal Subspace Tracking

EURASIP Journal on Advances in Signal Processing20062007:080301

Received: 1 October 2005

Accepted: 30 April 2006

Published: 17 October 2006


This paper presents an adaptive method for maintaining paraunitary constraints on direct-form multichannel finite impulse response (FIR) filters. The technique is a spatiotemporal extension of a simple iterative procedure for imposing orthogonality constraints on nearly unitary matrices. A convergence analysis indicates that it has a large capture region, and its convergence rate is shown to be locally quadratic. Simulations of the method verify its capabilities in maintaining paraunitary constraints for gradient-based spatiotemporal principal and minor subspace tracking. Finally, as the technique is easily extended to multidimensional convolution forms, we illustrate such an extension for two-dimensional adaptive paraunitary filters using a simple image sequence encoding example.


ConvolutionConvergence RateQuantum InformationImage SequenceIterative Procedure


Authors’ Affiliations

Department of Electrical Engineering, School of Engineering, Southern Methodist University, Dallas, USA


  1. Abreu E, Mitra SK, Marchesani R: Nonminimum phase channel equalization using noncausal filters. IEEE Transactions on Signal Processing 1997,45(1):1-13. 10.1109/78.552201View ArticleGoogle Scholar
  2. Bjorck A, Bowie C: An iterative algorithm for computing the best estimate of an orthogonal matrix. SIAM Journal on Numerical Analysis 1971,8(2):358-364. 10.1137/0708036MathSciNetView ArticleGoogle Scholar
  3. Chen T-P, Amari S-I, Lin Q: A unified algorithm for principal and minor components extraction. Neural Networks 1998,11(3):385-390. 10.1016/S0893-6080(98)00004-5View ArticleGoogle Scholar
  4. Chen T, Lin Q: Dynamic behavior of the whitening process. IEEE Signal Processing Letters 1998,5(1):25-26. 10.1109/97.654871View ArticleGoogle Scholar
  5. Douglas SC: Fast implementations of the filtered-X LMS and LMS algorithms for multichannel active noise control. IEEE Transactions on Speech and Audio Processing 1999,7(4):454-465. 10.1109/89.771315View ArticleGoogle Scholar
  6. Douglas SC, Amari S-I, Kung S-Y: On gradient adaptation with unit-norm constraints. IEEE Transactions on Signal Processing 2000,48(6):1843-1847. 10.1109/78.845952View ArticleGoogle Scholar
  7. Douglas SC, Amari S-I, Kung S-Y: Gradient adaptive paraunitary filter banks for spatio-temporal subspace analysis and multichannel blind deconvolution. Journal of VLSI Signal Processing 2004,37(2-3):247-261.View ArticleMATHGoogle Scholar
  8. Douglas SC, Cichocki A: Neural networks for blind decorrelation of signals. IEEE Transactions on Signal Processing 1997,45(11):2829-2842. 10.1109/78.650109View ArticleGoogle Scholar
  9. Douglas SC, Kung S-Y, Amari S-I: A self-stabilized minor subspace rule. IEEE Signal Processing Letters 1998,5(12):328-330. 10.1109/97.735427View ArticleGoogle Scholar
  10. Douglas SC, Sawada H, Makino S: A spatio-temporal fastica algorithm for separating convolutive mixtures. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 5: 165-168.Google Scholar
  11. Fan K, Hoffman AJ: Some metric inequalities in the space of matrices. Proceedings of the American Mathematical Society 1955,6(1):111-116. 10.1090/S0002-9939-1955-0067841-7MathSciNetView ArticleMATHGoogle Scholar
  12. Farhang-Boroujeny B, Nooshfar S: Adaptive phase equalization using all-pass filters. Proceedings of IEEE International Conference on Communications (ICC '91), June 1991, Denver, Colo, USA 3: 1403-1407.Google Scholar
  13. Hasan MA: Natural gradient for minor component extraction. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '05), May 2005, Kobe, Japan 5: 5138-5141.View ArticleGoogle Scholar
  14. Hua Y: Asymptotical orthonormalization of subspace matrices without square root. IEEE Signal Processing Magazine 2004,21(4):56-61. 10.1109/MSP.2004.1311143View ArticleGoogle Scholar
  15. Hyvarinen A, Karhunen J, Oja E: Independent Component Analysis. John Wiley & Sons, New York, NY, USA; 2001.View ArticleGoogle Scholar
  16. Kirac A, Vaidyanathan PP: Theory and design of optimum FIR compaction filters. IEEE Transactions on Signal Processing 1998,46(4):903-919. 10.1109/78.668545View ArticleGoogle Scholar
  17. Lim TJ, Macleod MD: Adaptive allpass filtering for nonminimum-phase system identification. IEE Proceedings–Vision, Image, and Signal Processing 1994,141(6):373-379. 10.1049/ip-vis:19941549View ArticleGoogle Scholar
  18. Loubaton P, Regalia PA: Blind deconvolution of multivariate signals by using adaptive FIR lossless filters. Proceedings of the European Signal Processing Conference (EUSIPCO '92), August 1992, Brussels, Belgium 1061-1064.Google Scholar
  19. Manton JH: Optimization algorithms exploiting unitary constraints. IEEE Transactions on Signal Processing 2002,50(3):635-650. 10.1109/78.984753MathSciNetView ArticleGoogle Scholar
  20. Manton JH, Helmke U, Mareels IMY: A dual purpose principal and minor component flow. Systems and Control Letters 2005,54(8):759-769. 10.1016/j.sysconle.2004.11.015MathSciNetView ArticleMATHGoogle Scholar
  21. McEwen PA, Kenney JG: Allpass forward equalizer for decision feedback equalization. IEEE Transactions on Magnetics 1995,31(6, part 1):3045-3047. 10.1109/20.490264View ArticleGoogle Scholar
  22. Moulin P, Mihcak MK: Theory and design of signal-adapted FIR paraunitary filter banks. IEEE Transactions on Signal Processing 1998,46(4):920-929. 10.1109/78.668546View ArticleGoogle Scholar
  23. Oja E, Karhunen J: On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. Journal of Mathematical Analysis and Applications 1985,106(1):69-84. 10.1016/0022-247X(85)90131-3MathSciNetView ArticleMATHGoogle Scholar
  24. Ottersten B, Kailath T: Direction-of-arrival estimation for wide-band signals using the ESPRIT algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing 1990,38(2):317-327. 10.1109/29.103067View ArticleGoogle Scholar
  25. Porat B, Friedlander B: Estimation of spatial and spectral parameters of multiple sources. IEEE Transactions on Information Theory 1983,29(3):412-425. 10.1109/TIT.1983.1056670View ArticleMATHGoogle Scholar
  26. Regalia PA, Loubaton P: Rational subspace estimation using adaptive lossless filters. IEEE Transactions on Signal Processing 1992,40(10):2392-2405. 10.1109/78.157284View ArticleMATHGoogle Scholar
  27. Sun X, Douglas SC: Self-stabilized adaptive allpass filters for phase equalization and approximation. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '00), June 2000, Istanbul, Turkey 1: 444-447.Google Scholar
  28. Tsatsanis MK, Giannakis GB: Principal component filter banks for optimal multiresolution analysis. IEEE Transactions on Signal Processing 1995,43(8):1766-1777. 10.1109/78.403336View ArticleGoogle Scholar
  29. Xuan B, Bamberger RI: FIR principal component filter banks. IEEE Transactions on Signal Processing 1998,46(4):930-940. 10.1109/78.668547View ArticleGoogle Scholar


© Douglas 2007