Skip to main content

Constrained Optimization of MIMO Training Sequences

Abstract

Multiple-input multiple-output (MIMO) systems have shown a huge potential for increased spectral efficiency and throughput. With an increasing number of transmitting antennas comes the burden of providing training for channel estimation for coherent detection. In some special cases optimal, in the sense of mean-squared error (MSE), training sequences have been designed. However, in many practical systems it is not feasible to analytically find optimal solutions and numerical techniques must be used. In this paper, two systems (unique word (UW) single carrier and OFDM with nulled subcarriers) are considered and a method of designing near-optimal training sequences using nonlinear optimization techniques is proposed. In particular, interior-point (IP) algorithms such as the barrier method are discussed. Although the two systems seem unrelated, the cost function, which is the MSE of the channel estimate, is shown to be effectively the same for each scenario. Also, additional constraints, such as peak-to-average power ratio (PAPR), are considered and shown to be easily included in the optimization process. Numerical examples illustrate the effectiveness of the designed training sequences, both in terms of MSE and bit-error rate (BER).

References

  1. 1.

    Foschini GJ, Gans MJ: On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 1998,6(3):311-335. 10.1023/A:1008889222784

    Article  Google Scholar 

  2. 2.

    Goldsmith A, Jafar SA, Jindal N, Vishwanath S: Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications 2003,21(5):684-702. 10.1109/JSAC.2003.810294

    Article  Google Scholar 

  3. 3.

    Foschini GJ: Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal 1996,1(2):41-59.

    Article  Google Scholar 

  4. 4.

    van Zelst A: Space division multiplexing algorithms. Proceedings of the Mediterranean Electrotechnical Conference (MELECON '00), May 2000, Lemesos, Cyprus 3: 1218–1221.

    Article  Google Scholar 

  5. 5.

    Alamouti SM: A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 1998,16(8):1451-1458. 10.1109/49.730453

    Article  Google Scholar 

  6. 6.

    Naguib AF, Seshádri N, Calderbank AR: Increasing data rate over wireless channels: space time coding and signal processing for high data rate wireless communications. IEEE Signal Processing Magazine 2000,17(3):76-92. 10.1109/79.841731

    Article  Google Scholar 

  7. 7.

    Tarokh V, Jafarkhani H, Calderbank AR: Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 1999,45(5):1456-1467. 10.1109/18.771146

    MathSciNet  Article  Google Scholar 

  8. 8.

    van Nee R, Prasad R: OFDM for Wireless Multimedia Communications. 1st edition. Artech House, Boston, Mass, USA; 2000.

    Google Scholar 

  9. 9.

    Deneire L, Vandenameele P, van der Perre L, Gyselinckx B, Engels M: A low-complexity ML channel estimator for OFDM. IEEE Transactions on Communications 2003,51(2):135-140. 10.1109/TCOMM.2003.809234

    Article  Google Scholar 

  10. 10.

    Tung T-L, Yao K, Hudson RE: Channel estimation and adaptive power allocation for performanceand capacity improvement of multiple-antenna OFDM systems. Proceedings of the 3rd IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC '01), March 2001, Taiwan, China 82–85.

    Google Scholar 

  11. 11.

    Li Y, Seshadri N, Ariyavisitakul S: Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. IEEE Journal on Selected Areas in Communications 1999,17(3):461-471. 10.1109/49.753731

    Article  Google Scholar 

  12. 12.

    Barhumi I, Leus G, Moonen M: Optimal training design for MIMO OFDM systems in mobile wireless channels. IEEE Transactions on Signal Processing 2003,51(6):1615-1624. 10.1109/TSP.2003.811243

    Article  Google Scholar 

  13. 13.

    Coon JP, Beach M, McGeehan J: Optimal training sequences for channel estimation in cyclic-prefix-based single-carrier systems with transmit diversity. IEEE Signal Processing Letters 2004,11(9):729-732. 10.1109/LSP.2004.833485

    Article  Google Scholar 

  14. 14.

    Ma X, Yang L, Giannakis GB: Optimal training for MIMO frequency-selective fading channels. IEEE Transactions on Wireless Communications 2005,4(2):453-466.

    Article  Google Scholar 

  15. 15.

    Minn H, Al-Dhahir N: Optimal training signals for MIMO OFDM channel estimation. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '04), November-December 2004, Dallas, Tex, USA 1: 219–224.

    Article  Google Scholar 

  16. 16.

    Sun Q, Cox DC, Huang HC, Lozano A: Estimation of continuous flat fading MIMO channels. IEEE Transactions on Wireless Communications 2002,1(4):549-553. 10.1109/TWC.2002.804178

    Article  Google Scholar 

  17. 17.

    Leus G, Moonen M: Semi-blind channel estimation for block transmissions with non-zero padding. Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers, November 2001, Pacific Grove, Calif, USA 1: 762–766.

    Google Scholar 

  18. 18.

    Rousseaux O, Leus G, Stoica P, Moonen M: A stochastic method for training based channel identification. Proceedings of the 7th International Symposium on Signal Processing and Its Applications (ISSPA '03), July 2003, Paris, France

    Google Scholar 

  19. 19.

    Larsson EG, Li J: Preamble design for multiple-antenna OFDM-based WLANs with null subcarriers. IEEE Signal Processing Letters 2001,8(11):285-288. 10.1109/97.969445

    Article  Google Scholar 

  20. 20.

    Tellambura C, Parker MG, Guo YJ, Shepherd SJ, Barton SK: Optimal sequences for channel estimation using discrete Fourier transform techniques. IEEE Transactions on Communications 1999,47(2):230-238. 10.1109/26.752128

    Article  Google Scholar 

  21. 21.

    Chen W, Mitra U: Training sequence optimization: comparisons and an alternative criterion. IEEE Transactions on Communications 2000,48(12):1987-1991. 10.1109/26.891207

    Article  Google Scholar 

  22. 22.

    Boyd S, Vandenberghe L: Convex Optimization. Cambridge University Press, Cambridge, UK; 2004.

    Google Scholar 

  23. 23.

    Chiang M: To layer or not to layer: balancing transport and physical layers in wireless multihop networks. Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '04), March 2004, Hong Kong 4: 2525–2536.

    Google Scholar 

  24. 24.

    Palomar DP, Cioffi JM, Lagunas MA: Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization. IEEE Transactions on Signal Processing 2003,51(9):2381-2401. 10.1109/TSP.2003.815393

    Article  Google Scholar 

  25. 25.

    Santos JR, Lora AT, Expósito AG, Ramos JLM: Finding improved local minima of power system optimization problems by interior-point methods. IEEE Transactions on Power Systems 2003,18(1):238-244. 10.1109/TPWRS.2002.807097

    Article  Google Scholar 

  26. 26.

    Deneire L, Gyselinckx B, Engels M: Training sequence versus cyclic prefix—a new look on single carrier communication. IEEE Communications Letters 2001,5(7):292-294. 10.1109/4234.935746

    Article  Google Scholar 

  27. 27.

    Falconer D, Ariyavisitakul SL, Benyamin-Seeyar A, Eidson B: Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communications Magazine 2002,40(4):58-66. 10.1109/35.995852

    Article  Google Scholar 

  28. 28.

    Witschnig H, Mayer T, Springer A, et al.: A different look on cyclic prefix for SC/FDE. Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '02), September 2002, Lisbon, Portugal 2: 824–828.

    Article  Google Scholar 

  29. 29.

    Rousseaux O, Leus G, Moonen M: A suboptimal iterative method for maximum-likelihood sequence estimation in a multipath context. EURASIP Journal on Applied Signal Processing 2002,2002(12):1437-1447. 10.1155/S1110865702209014

    MATH  Google Scholar 

  30. 30.

    Huemer M, Witschnig H, Hausner J: Unique word based phase tracking algorithms for SC/FDE-systems. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '03), December 2003, San Francisco, Calif, USA 1: 70–74.

    Article  Google Scholar 

  31. 31.

    Li Y, Yang L: Semi-blind MIMO channel identification based on error adjustment. Proceedings of the International Conference on Neural Networks and Signal Processing, December 2003, Nanjing, China 2: 1429–1432.

    Google Scholar 

  32. 32.

    Coon JP, Sandell M, Beach M, McGeehan J: Channel and noise variance estimation and tracking algorithms for unique-word based single-carrier systems. IEEE Transactions on Wireless Communications 2006,5(6):1488-1496.

    Article  Google Scholar 

  33. 33.

    Coon JP, Sandell M: Near-optimal unique word design in single-carrier block transmission systems. Proceedings of the 8th International Symposium on Signal Processing and Its Applications, August 2005, Sydney, Australia 1: 303–306.

    Google Scholar 

  34. 34.

    Hu D, Yang L, Shi Y, He L: Optimal pilot sequence design for channel estimation in MIMO OFDM systems. IEEE Communications Letters 2006,10(1):1-3. 10.1109/LCOMM.2006.1576550

    Google Scholar 

  35. 35.

    Moon TK, Stirling WC: Mathematical Methods and Algorithms for Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, USA; 2000.

    Google Scholar 

  36. 36.

    Tellado J: Multicarrier Modulation with Low PAR: Applications to DSL and Wireless. Kluwer Academic, Norwell, Mass, USA; 2000.

    Google Scholar 

  37. 37.

    Proakis JG: Digital Communications. 4th edition. McGraw-Hill, New York, NY, USA; 2001.

    Google Scholar 

  38. 38.

    Erceg V, Schumacher L, Kyritsi P, et al.: TGn channel models. IEEE 802.11 - 03/940r4, May 2004, https://doi.org/www.802wirelessworld.com/

  39. 39.

    Supplement to IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements—Part 11: wireless LAN Medium Access Control (MAC) and Physical Layer (PHY), IEEE Std 802.11a, 1999

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Justin P. Coon.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://doi.org/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Coon, J.P., Sandell, M. Constrained Optimization of MIMO Training Sequences. EURASIP J. Adv. Signal Process. 2007, 080857 (2007). https://doi.org/10.1155/2007/80857

Download citation

Keywords

  • Cost Function
  • Quantum Information
  • Nonlinear Optimization
  • Channel Estimate
  • Numerical Technique