Skip to content


  • Research Article
  • Open Access

Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems

EURASIP Journal on Advances in Signal Processing20072007:080919

  • Received: 27 April 2006
  • Accepted: 23 December 2006
  • Published:


Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore, conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was applied to empirical data of two successive years. The approach is especially useful for network planning and load management of power distribution systems containing a high density of photovoltaic generation units.


  • Spectral Density
  • Empirical Data
  • Characteristic Scale
  • Solar Irradiance
  • Generation Unit

Authors’ Affiliations

3E sa, Rue du Canal 61, Brussels, 1000, Belgium
Departement Elektrotechniek, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Leuven, 3001, Belgium
Photovoltech sa, Grijpenlaan 18, Tienen, 3300, Belgium


  1. Misiti M, Misiti Y, Oppenheim G, Poggi J-M: Décomposition par ondelettes et méthodes comparatives: étude d'une courbe de charge électrique. Revue de Statistique Appliquée 1994,42(2):57-77.Google Scholar
  2. Degaudenzi ME, Arizmendi CM: Wavelet-based fractal analysis of electrical power demand. Fractals 2000,8(3):239-245. 10.1142/S0218348X0000024XGoogle Scholar
  3. Santoso S, Powers EJ, Grady WM: Power quality disturbance data compression using wavelet transform methods. IEEE Transactions on Power Delivery 1997,12(3):1250-1256. 10.1109/61.637001Google Scholar
  4. Santoso S, Grady WM, Powers EJ, Lamoree J, Bhatt SC: Characterization of distribution power quality events with Fourier and wavelet transforms. IEEE Transactions on Power Delivery 2000,15(1):247-254. 10.1109/61.847259Google Scholar
  5. Pierz P, Rosołowski E: Analysis and reconstruction of the shape of the voltage sag using wavelet transform. Fachtagung Elektrische Energiewandlungssysteme, March 2002, Magdeburg, Germany 74–77.Google Scholar
  6. Croes T, Gherasim C, Van Den Keybus J, Ghijselen J, Driesen J, Belmans R: Power measurement using the wavelet transform of analytic signals. Proceedings of the 11th International Conference on Harmonics and Quality of Power, September 2004, Lake Placid, NY, USA 338–341. CD-ROMGoogle Scholar
  7. Lee C-H, Wang Y-J, Huang W-L: A literature survey of wavelets in power engineering applications. Proceedings of the National Science Council, Republic of China, Part A 2000,24(4):249-258.Google Scholar
  8. Woyte A, Thong VV, Belmans R, Nijs J: Voltage fluctuations on distribution level introduced by photovoltaic systems. IEEE Transactions on Energy Conversion 2006,21(1):202-209. 10.1109/TEC.2005.845454Google Scholar
  9. Woyte A, Bodach M, Belmans R, Nijs J: Power fluctuations in micro-grids introduced by photovoltaics: analysis and solutions. Proceedings of the 2nd European PV-Hybrid and Mini-Grid Conference, September 2003, Kassel, Germany 449–454.Google Scholar
  10. Woyte A, Belmans R, Nijs J: Fluctuations in instantaneous clearness index: Analysis and statistics. Solar Energy 2007,81(2):195-206. 10.1016/j.solener.2006.03.001MATHGoogle Scholar
  11. Nason GP, Silverman BW: The stationary wavelet transform and some statistical applications. In Wavelets and Statistics, Lecture Notes in Statistics. Volume 103. Edited by: Antoniadis A, Oppenheim G. Springer, New York, NY, USA; 1995:281-299. 10.1007/978-1-4612-2544-7_17Google Scholar
  12. Nason GP, von Sachs R, Kroisandt G: Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. Journal of the Royal Statistical Society. Series B 2000,62(2):271-292. 10.1111/1467-9868.00231MathSciNetGoogle Scholar
  13. Van Bellegem S, von Sachs R: Locally adaptive estimation of sparse evolutionary wavelet spectra. In Discussion Paper 310. Institut de Statistique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium; 2003. Scholar
  14. Kern EC Jr., Gulachenski EM, Kern GA: Cloud effects on distributed photovoltaic generation: slow transients at the Gardner, Massachusetts photovoltaic experiment. IEEE Transactions on Energy Conversion 1989,4(2):184-190. 10.1109/60.17910Google Scholar
  15. Jewell W, Ramakumar R: The effects of moving clouds on electric utilities with dispersed photovoltaic generation. IEEE Transactions on Energy Conversion 1987,2(4):570-576.Google Scholar
  16. Beyer H, Hammer A, Luther J, Poplawska J, Stolzenburg K, Wieting P: Analysis and synthesis of cloud pattern for radiation field studies. Solar Energy 1994,52(5):379-390. 10.1016/0038-092X(94)90115-IGoogle Scholar
  17. Otani K, Minowa J, Kurokawa K: Study on areal solar irradiance for analyzing areally-totalized PV systems. Solar Energy Materials and Solar Cells 1997,47(1–4):281-288.Google Scholar
  18. Iqbal M: An Introduction to Solar Radiation. Academic Press, Don Mills, Ontario, Canada; 1983.Google Scholar
  19. Skartveit A, Olseth JA: The probability density and autocorrelation of short-term global and beam irradiance. Solar Energy 1992,49(6):477-487. 10.1016/0038-092X(92)90155-4Google Scholar
  20. Suehrcke H, McCormick PG: The frequency distribution of instantaneous insolation values. Solar Energy 1988,40(5):413-422. 10.1016/0038-092X(88)90096-5Google Scholar
  21. Bendt P, Collares-Pereira M, Rabl A: The frequency distribution of daily insolation values. Solar Energy 1981,27(1):1-5. 10.1016/0038-092X(81)90013-XGoogle Scholar
  22. Gordon JM, Reddy TA: Time series analysis of hourly global horizontal solar radiation. Solar Energy 1988,41(5):423-429. 10.1016/0038-092X(88)90016-3Google Scholar
  23. Hollands KGT, Huget RG: A probability density function for the clearness index, with applications. Solar Energy 1983,30(3):195-209. 10.1016/0038-092X(83)90149-4Google Scholar
  24. Liu BHY, Jordan RC: The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy 1960,4(3):1-19. 10.1016/0038-092X(60)90062-1Google Scholar
  25. Coifman RR, Dohono DL: Translation-invariant de-noising. In Wavelets and Statistics, Lecture Notes in Statistics. Volume 103. Edited by: Antoniadis A, Oppenheim G. Springer, New York, NY, USA; 1995:125-150. 10.1007/978-1-4612-2544-7_9Google Scholar
  26. Mallat S: A Wavelet Tour of Signal Processing. Academic Press, San Diego, Calif, USA; 1999.MATHGoogle Scholar
  27. Pesquet J-C, Krim H, Carfantan H: Time-invariant orthonormal wavelet representations. IEEE Transactions on Signal Processing 1996,44(8):1964-1970. 10.1109/78.533717Google Scholar
  28. Daubechies I: Ten Lectures on Wavelets. SIAM, Philadelphia, Pa, USA; 1992.MATHGoogle Scholar
  29. Oppenheim AV, Schafer RW: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, USA; 1989.MATHGoogle Scholar
  30. Bodach M: Short term power backup in PV systems with ultra capacitors. Proceedings of the 17th European Photovoltaic Solar Energy Conference and Exhibition (EUPVSEC '01), October 2001, Munich, Germany 518–519.Google Scholar
  31. Rahman MH, Nakayama J, Nakamura K, Yamashiro S: An intelligent grid-connected PV-ECS system with load leveling function. Proceedings of the 3rd IASTED International Conference on Power and Energy Systems (EUROPES '03), September 2003, Marbella, Spain 75–80.Google Scholar


© Achim Woyte et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.