Skip to main content

Video Enhancement and Dynamic Range Control of HDR Sequences for Automotive Applications


CMOS video cameras with high dynamic range (HDR) output are particularly suitable for driving assistance applications, where lighting conditions can strongly vary, going from direct sunlight to dark areas in tunnels. However, common visualization devices can only handle a low dynamic range, and thus a dynamic range reduction is needed. Many algorithms have been proposed in the literature to reduce the dynamic range of still pictures. Anyway, extending the available methods to video is not straightforward, due to the peculiar nature of video data. We propose an algorithm for both reducing the dynamic range of video sequences and enhancing its appearance, thus improving visual quality and reducing temporal artifacts. We also provide an optimized version of our algorithm for a viable hardware implementation on an FPGA. The feasibility of this implementation is demonstrated by means of a case study.


  1. 1.

    NeuriCam s.p.a : NC1802 Pupilla, 640 x 480 CMOS high-dynamic range optical sensor. 2002.

    Google Scholar 

  2. 2.

    Kodak : Kodak KAC-9619 CMOS image sensor.

  3. 3.

    Ohtsuki H, Nakanishi K, Mori A, Sakai S, Yachi S, Timmers W: 18.1-inch XGA TFT-LCD with wide color reproduction using high power LED-backlighting. Proceedings of Society for Information Display International Symposium, 2002, San Jose, Calif, USA 1154–1157.

    Google Scholar 

  4. 4.

    Seetzen H, Heidrich W, Stuerzlinger W, et al.: High dynamic range display systems. ACM Transactions on Graphics 2004,23(3):760-768. 10.1145/1015706.1015797

    Article  Google Scholar 

  5. 5.

    Seetzen H, Whitehead L, Ward G: A high dynamic range display using low and high resolution modulators. Proceedings of Society for Information Display International Symposium, May 2003, San Jose, Calif, USA 1450–f1453.

    Google Scholar 

  6. 6.

    Impoco G, Marsi S, Ramponi G: Adaptive reduction of the dynamics of HDR video sequences. Proceedings of IEEE International Conference on Image Processing (ICIP '05), September 2005, Genoa, Italy 1: 945–948.

    Google Scholar 

  7. 7.

    Land EH, McCann JJ: Lightness and retinex theory. Journal of the Optical Society of America 1971,61(1):1-11. 10.1364/JOSA.61.000001

    Article  Google Scholar 

  8. 8.

    Ashikhmin M: A tone mapping algorithm for high contrast images. Proceedings of the 13th Eurographics Workshop on Rendering (EGRW '02), June 2002, Pisa, Italy 145–156.

    Google Scholar 

  9. 9.

    Durand F, Dorsey J: Fast bilateral filtering for the display of high-dynamic-range images. Proceedings of the 29th International Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH '02), July 2002, San Antonio, Tex, USA 257–266.

    Google Scholar 

  10. 10.

    Fattal R, Lischinski D, Werman M: Gradient domain high dynamic range compression. ACM Transactions on Graphics 2002,21(3):249-256.

    Article  Google Scholar 

  11. 11.

    Marsi S, Ramponi G, Carrato S: Image contrast enhancement using a recursive rational filter. Proceedings of IEEE International Workshop on Imaging Systems and Techniques (IST '04), May 2004, Stresa, Italy 29–34.

    Google Scholar 

  12. 12.

    Pal C, Szeliski R, Uyttendaele M, Jojic N: Probability models for high dynamic range imaging. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), June-July 2004, Washington, DC, USA 2: 173–180.

    Google Scholar 

  13. 13.

    Pattanaik SN, Yee H: Adaptive gain control for high dynamic range image display. Proceedings of the 18th Spring Conference on Computer Graphics (SCCG '02), April 2002, Budmerice, Slovakia 83–87.

    Google Scholar 

  14. 14.

    Reinhard E, Stark M, Shirley P, Ferwerda J: Photographic tone reproduction for digital images. Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '02), July 2002, San Antonio, Tex, USA 267–276.

    Google Scholar 

  15. 15.

    Rizzi A, Gatta C, Marini D: From Retinex to Automatic Color Equalization: issues in developing a new algorithm for unsupervised color equalization. Journal of Electronic Imaging 2004,13(1):75-84. 10.1117/1.1635366

    Article  Google Scholar 

  16. 16.

    Tumblin J, Turk G: LCIS: a boundary hierarchy for detail-preserving contrast reduction. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99), August 1999, Los Angeles, Calif, USA 83–90.

    Google Scholar 

  17. 17.

    Hines G, Rahman Z-U, Jobson D, Woodell G: DSP implementation of the retinex image enhancement algorithm. Visual Information Processing XIII, April 2004, Orlando, Fla, USA, Proceedings of SPIE 5438: 13–24.

    Article  Google Scholar 

  18. 18.

    Monobe Y, Yamashita H, Kurosawa T, Kotera H: Dynamic range compression preserving local image contrast for digital video camera. IEEE Transactions on Consumer Electronics 2005,51(1):1-10. 10.1109/TCE.2005.1405691

    Article  Google Scholar 

  19. 19.

    Artusi A, Bittner J, Wimmer M, Wilkie A: Delivering interactivity to complex tone mapping operators. Proceedings of the 14th Eurographics Workshop on Rendering (EGRW '03), June 2003, Leuven, Belgium 38–44.

    Google Scholar 

  20. 20.

    Pattanaik SN, Tumblin J, Yee H, Greenberg DP: Time-dependent visual adaptation for fast realistic image display. Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00), July 2000, New Orleans, La, USA 47–54.

    Google Scholar 

  21. 21.

    Kang SB, Uyttendaele M, Winder S, Szeliski R: High dynamic range video. ACM Transactions on Graphics 2003,22(3):319-325. 10.1145/882262.882270

    Article  Google Scholar 

  22. 22.

    Krawczyk G, Myszkowski K, Seidel H-P: Perceptual effects in real-time tone mapping. Proceedings of the 21st Spring Conference on Computer Graphics (SCCG '05), May 2005, Budmerice, Slovakia 195–202.

    Google Scholar 

  23. 23.

    Ledda P, Santos LP, Chalmers A: A local model of eye adaptation for high dynamic range images. Proceedings of the 3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa (AFRIGRAPH '04), November 2004, Stellenbosch, South Africa 151–160.

    Google Scholar 

  24. 24.

    Ramsey SD, Johnson JT III, Hansen C: Adaptive temporal tone mapping. Proceedings of the 7th IASTED International Conference on Computer Graphics and Imaging, August 2004, Kauai, Hawaii, USA 124–128.

    Google Scholar 

  25. 25.

    Wang H, Raskar R, Ahuja N: High dynamic range video using split aperture camera. Proceedings of the 6th IEEE Workshop on Omnidirectional Vision (OM-NIVIS '05), October 2005, Beijing, China 83–90.

    Google Scholar 

  26. 26.

    Bennett EP, McMillan L: Video enhancement using per-pixel virtual exposures. Proceedings of the 32nd International Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH '05), July-August 2005, Los Angeles, Calif, USA 845–852.

    Google Scholar 

  27. 27.

    Andrade LCG, Campos MFM, Carceroni RL: A video-based support system for nighttime navigation in semi-structured environments. Proceedings of the 17th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI '04), October 2004, Curitiba, PR, Brazil 178–185.

    Google Scholar 

  28. 28.

    Kavadias S, Dierickx B, Scheffer D, Alaerts A, Uwaerts D, Bogaerts J: A logarithmic response CMOS image sensor with on-chip calibration. IEEE Journal of Solid-State Circuits 2000,35(8):1146-1152. 10.1109/4.859503

    Article  Google Scholar 

  29. 29.

    NeuriCam s.p.a. Ethercam NC51XX series

  30. 30.

    Jobson D, Rahman Z-U, Woodell G: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing 1997,6(7):965-976. 10.1109/83.597272

    Article  Google Scholar 

  31. 31.

Download references

Author information



Corresponding author

Correspondence to Stefano Marsi.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Marsi, S., Impoco, G., Ukovich, A. et al. Video Enhancement and Dynamic Range Control of HDR Sequences for Automotive Applications. EURASIP J. Adv. Signal Process. 2007, 080971 (2007).

Download citation


  • Video Sequence
  • Visual Quality
  • Video Data
  • Hardware Implementation
  • High Dynamic Range