Skip to main content

Underdetermined Blind Source Separation in Echoic Environments Using DESPRIT

Abstract

The DUET blind source separation algorithm can demix an arbitrary number of speech signals using anechoic mixtures of the signals. DUET however is limited in that it relies upon source signals which are mixed in an anechoic environment and which are sufficiently sparse such that it is assumed that only one source is active at a given time frequency point. The DUET-ESPRIT (DESPRIT) blind source separation algorithm extends DUET to situations where sparsely echoic mixtures of an arbitrary number of sources overlap in time frequency. This paper outlines the development of the DESPRIT method and demonstrates its properties through various experiments conducted on synthetic and real world mixtures.

References

  1. 1.

    Hyvarinen A, Karhunen J, Oja E: Independent Component Anaylsis, Wiley Series on Adaptive and Learning Systems for Signal Processing, Communications and Control. John Wiley & Sons, New York, NY, USA; 2001.

    Google Scholar 

  2. 2.

    Bell AJ, Sejnowski TJ: An information maximisation approach to blind separation and blind deconvolution. Neural Computation 1995,7(6):1129–1159. 10.1162/neco.1995.7.6.1129

    Article  Google Scholar 

  3. 3.

    Cichocki A, Amari S: Adaptive Blind Signal and Image Processing. John Wiley & Sons, New York, NY, USA; 2003.

    Google Scholar 

  4. 4.

    Yilmaz O, Rickard S: Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on Signal Processing 2004,52(7):1830–1846. 10.1109/TSP.2004.828896

    MathSciNet  Article  Google Scholar 

  5. 5.

    Melia T, Rickard S, Fearon C: Histogram-based blind source separation of more sources than sensors using a DUET-ESPRIT technique. Proceedings of the 13th European Signal Processing Conference (EUSIPCO '05), September 2005, Antalya, Turkey

    Google Scholar 

  6. 6.

    Rickard S, Melia T, Fearon C: DESPRIT - histogram based blind source separation of more sources than sensors using subspace methods. Proceedings of the IEEE Workshop on Applications of Signal Processing in Audio and Acoustics, October 2005, New Paltz, NY, USA 5–8.

    Google Scholar 

  7. 7.

    Melia T, Rickard S, Fearon C: Extending the DUET blind source separation technique. Proceedings of Signal Processing with Adaptative Sparse Structured Representations Workshop (SPARS '05), November 2005, Rennes, France

    Google Scholar 

  8. 8.

    Balan R, Rosca J, Rickard S: Scalable non-square blind source separation in the presence of noise. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '03), April 2003, Hong Kong 5: 293–296.

    Google Scholar 

  9. 9.

    Balan R, Rosca J: Sparse source separation using discrete prior models. Proceedings of Signal Processing with Adaptative Sparse Structured Representations Workshop (SPARS '05), November 2005, Rennes, France

    Google Scholar 

  10. 10.

    Li Y, Amari S-I, Cichocki A, Ho DWC, Xie S: Underdetermined blind source separation based on sparse representation. IEEE Transactions on Signal Processing 2006,54(2):423–437.

    Article  Google Scholar 

  11. 11.

    Saab R, Yilmaz O, McKeown M, Abugharbieb R: Underdetermined sparse blind source separation with delays. Proceedings of Signal Processing with Adaptative Sparse Structured Representations Workshop (SPARS '05), November 2005, Rennes, France

    Google Scholar 

  12. 12.

    O'Grady PD, Pearlmutter BA: Soft-LOST: EM on a mixture of oriented lines. Proceedings of the 5th International Conference on Independent Component Analysis and Blind Signal Separation (ICA '04), September 2004, Granada, Spain 430–436.

    Google Scholar 

  13. 13.

    Abrard F, Deville Y: A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Processing 2005,85(7):1389–1403. 10.1016/j.sigpro.2005.02.010

    Article  Google Scholar 

  14. 14.

    Georgiev P, Theis F, Cichocki A: Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Transactions on Neural Networks 2005,16(4):992–996. 10.1109/TNN.2005.849840

    Article  Google Scholar 

  15. 15.

    Blin A, Araki S, Makino S: A sparseness-mixing matrix estimation (SMME) solving the underdetermined BSS for convolutive mixtures. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04), May 2004, Montreal, Quebec, Canada 4: 85–88.

    Google Scholar 

  16. 16.

    Smaragdis P: Blind separation of convolved mixtures in the frequency domain. Proceedings of the International Workshop on Independence and Artificial Neural Networks, February 1998, Tenerife, Spain

    Google Scholar 

  17. 17.

    Torkkola K: Blind separation of convolved sources based on information maximisation. IEEE Workshop on Neural Networks and Signal Processing, September 1996, Kyoto, Japan 423–432.

    Google Scholar 

  18. 18.

    Murata N, Ikeda S, Ziehe A: An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 2001,41(1–4):1–24.

    Article  Google Scholar 

  19. 19.

    Sawada H, Mukai R, Araki S, Makino S: A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Transactions on Speech and Audio Processing 2004,12(5):530–538. 10.1109/TSA.2004.832994

    Article  Google Scholar 

  20. 20.

    Lee T-W, Lewicki MS, Girolami M, Sejnowski TJ: Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letters 1999,6(4):87–90. 10.1109/97.752062

    Article  Google Scholar 

  21. 21.

    Li Y, Cichocki A, Amari S-I: Analysis of sparse representation and blind source separation. Neural Computation 2004,16(6):1193–1234. 10.1162/089976604773717586

    Article  Google Scholar 

  22. 22.

    Schmidt R: Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 1986,34(3):276–280. 10.1109/TAP.1986.1143830

    Article  Google Scholar 

  23. 23.

    Roy R, Kailath T: ESPRIT - estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing 1989,37(7):984–995. 10.1109/29.32276

    Article  Google Scholar 

  24. 24.

    Krim H, Viberg M: Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine 1996,13(4):67–94. 10.1109/79.526899

    Article  Google Scholar 

  25. 25.

    Ottersten B, Viberg M, Kailath T: Performance analysis of the total least squares ESPRIT algorithm. IEEE Transactions on Signal Processing 1991,39(5):1122–1135. 10.1109/78.80967

    Article  Google Scholar 

  26. 26.

    Haardt M, Nossek JA: Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden. IEEE Transactions on Signal Processing 1995,43(5):1232–1242. 10.1109/78.382406

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Melia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Melia, T., Rickard, S. Underdetermined Blind Source Separation in Echoic Environments Using DESPRIT. EURASIP J. Adv. Signal Process. 2007, 086484 (2006). https://doi.org/10.1155/2007/86484

Download citation

Keywords

  • Information Technology
  • Real World
  • Quantum Information
  • Source Signal
  • Speech Signal