Skip to main content

3D Game Content Distributed Adaptation in Heterogeneous Environments


Most current multiplayer 3D games can only be played on a single dedicated platform (a particular computer, console, or cell phone), requiring specifically designed content and communication over a predefined network. Below we show how, by using signal processing techniques such as multiresolution representation and scalable coding for all the components of a 3D graphics object (geometry, texture, and animation), we enable online dynamic content adaptation, and thus delivery of the same content over heterogeneous networks to terminals with very different profiles, and its rendering on them. We present quantitative results demonstrating how the best displayed quality versus computational complexity versus bandwidth tradeoffs have been achieved, given the distributed resources available over the end-to-end content delivery chain. Additionally, we use state-of-the-art, standardised content representation and compression formats (MPEG-4 AFX, JPEG 2000, XML), enabling deployment over existing infrastructure, while keeping hooks to well-established practices in the game industry.


  1. 1.

    Apperley TH: Genre and game studies: toward a critical approach to video game genres. Simulation & Gaming 2006,37(1):6-23.

    Article  Google Scholar 

  2. 2.

    ISO/IEC JTC1/SC29/WG11 : Standard 14496-16. 2004.

    Google Scholar 

  3. 3.

    ISO/IEC JTC1/SC29/WG1 2004.

  4. 4.

    XML (eXtensible Markup Language) Core Working Group : XML 1.0 (4th ed.). 2006. W3C (World Wide Web Con-sortium),

    Google Scholar 

  5. 5.

    Said A, Pearlman WA: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 1996,6(3):243-250. 10.1109/76.499834

    Article  Google Scholar 

  6. 6.

    Khodakovsky A, Schröder P, Sweldens W: Progressive geometry compression. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00), July 2000, New Orleans, La, USA. ACM; 271–278.

    Chapter  Google Scholar 

  7. 7.

    Morán F: Modelado jerárquico de objetos 3D con superficies de subdivisión, Ph.D. thesis. Universidad Politécnica de Madrid, Madrid, Spain; 2001.

    Google Scholar 

  8. 8.

    Morán F, García N: Comparison of wavelet-based three-dimensional model coding techniques. IEEE Transactions on Circuits and Systems for Video Technology 2004,14(7):937-949. 10.1109/TCSVT.2004.830663

    Article  Google Scholar 

  9. 9.

    Avilés M, Morán F, García N: Progressive lower trees of wavelet coefficients: efficient spatial and SNR scalable coding of 3D models. In Proceedings of the 6th Pacific Rim Conference on Multimedia (PCM '05), November 2005, Jeju Island, Korea, Lecture Notes in Computer Science. Volume 3767. Springer; 61–72.

    Google Scholar 

  10. 10.

    Tack N, Lafruit G, Catthoor F, Lauwereins R: Eliminating CPU overhead for on-the-fly content adaptation with MPEG-4 wavelet subdivision surfaces. IEEE Transactions on Consumer Electronics 2006,52(2):559-565. 10.1109/TCE.2006.1649680

    Article  Google Scholar 

  11. 11.

    Tack K, Lafruit G, Catthoor F, Lauwereins R: Platform independent optimisation of multi-resolution 3D content to enable universal media access. The Visual Computer 2006,22(8):577-590. 10.1007/s00371-006-0036-0

    Article  Google Scholar 

  12. 12.

    Lee AWF, Sweldens W, Schröder P, Cowsar L, Dobkin D: MAPS: multiresolution adaptive parameterization of surfaces. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98), July 1998, Orlando, Fla, USA. ACM; 95–104.

    Chapter  Google Scholar 

  13. 13.

    Tack N, Morán F, Lafruit G, Lauwereins R: 3D graphics rendering time modeling and control for mobile terminals. In Proceedings of the 9th International Conference on 3D Web Technology, April 2004, Monterey, Calif, USA. ACM; 109–-117.

    Google Scholar 

  14. 14.

    Wimmer M, Wonka P: Rendering time estimation for real-time rendering. Proceedings of the 14th Eurographics workshop on Rendering, June 2003, Leuven, Belgium 118–129.

    Google Scholar 

  15. 15.

    ISO/IEC JTC1/SC29/WG11 : Standard 14496-2. 1999.

    Google Scholar 

  16. 16.

    Bormans J, Ngoc NP, Deconinck G, Lafruit G: Terminal QoS: advanced resource management for cost-effective multimedia appliances in dynamic contexts. In Ambient Intelligence: Impact on Embedded System Design. Kluwer Academic Publishers, Norwell, Mass, USA; 2003:183-201.

    Chapter  Google Scholar 

  17. 17.

    Ngoc PN, Lafruit G, Mignolet JY, Vernalde S, Deconick G, Lauwereins R: A framework for mapping scalable networked applications on run-time reconfigurable platforms. Proceedings of International Conference on Multimedia and Expo (ICME '03), July 2003, Baltimore, Md, USA 1: 469–472.

    Google Scholar 

  18. 18.

    Jang ES, Kim JDK, Jung SY, Han M-J, Woo SO, Lee S-J: Interpolator data compression for MPEG-4 animation. IEEE Transactions on Circuits and Systems for Video Technology 2004,14(7):989-1008. 10.1109/TCSVT.2004.830670

    Article  Google Scholar 

  19. 19.

    ISO/IEC JTC1/SC29/WG11 : Standard 14496-2/AMD1. 2000.

    Google Scholar 

  20. 20.

    Preda M, Prêteux F: Critic review on MPEG-4 face and body animation. Proceedings of the International Conference on Image Processing (ICIP '02), September 2002, Rochester, NY, USA 3: 505–508.

    Article  Google Scholar 

  21. 21.

    Endo M, Yasuda T, Yokoi S: A distributed multiuser virtual space system. IEEE Computer Graphics and Applications 2003,23(1):50-57. 10.1109/MCG.2003.1159613

    Article  Google Scholar 

  22. 22.

    Hijiri T, Nishitani K, Cornish T, Naka T, Asahara S: Spatial hierarchical compression method for 3D streaming animation. In Proceedings of the 5th Symposium on Virtual Reality Modeling Language (Web3D-VRML '00), February 2000, Monterey, Calif, USA. ACM; 95–101.

    Chapter  Google Scholar 

  23. 23.

    Chattopadhyay S, Bhandarkar SM, Li K: Virtual people & scalable worlds: efficient compression and delivery of stored motion data for avatar animation in resource constrained devices. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST '05), November 2005, Monterey, Calif, USA. ACM; 235–243.

    Chapter  Google Scholar 

  24. 24.

    Preda M, Prêteux F: Virtual character within MPEG-4 animation framework eXtension. IEEE Transactions on Circuits and Systems for Video Technology 2004,14(7):975-988. 10.1109/TCSVT.2004.830661

    Article  Google Scholar 

  25. 25.

    Preda M, Tran S, Prêteux F: Adaptation of quadric metric simplification to MPEG-4 animated object. In Proceedings of the 6th Pacific Rim Conference on Multimedia (PCM '05), November 2005, Jeju Island, Korea, Lecture Notes in Computer Science. Volume 3767. Springer; 49–60.

    Google Scholar 

  26. 26.

    Garland M, Heckbert PS: Surface simplification using quadric error metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97), August 1997, Los Angeles, Calif, USA. ACM; 209–216.

    Chapter  Google Scholar 

  27. 27.

    IEEE : Standard 1278.1a for Distributed Interactive Simulation—Application Protocols. 1998.

    Google Scholar 

  28. 28.

    Dahmann JS, Fujimoto RM, Weatherly RM: Department of defense high level architecture. In Proceedings of the 29th Conference on Winter Simulation, December 1997, Atlanta, Ga, USA. ACM; 142–149.

    Chapter  Google Scholar 

  29. 29.

    Smed J, Kaukoranta T, Hakonen H: Aspects of networking in multiplayer computer games. Electronic Library 2002,20(2):87-97. 10.1108/02640470210424392

    Article  Google Scholar 

  30. 30.

    Androutsellis-Theotokis S, Spinellis D: A survey of peer-to-peer content distribution technologies. ACM Computing Surveys 2004,36(4):335-371. 10.1145/1041680.1041681

    Article  Google Scholar 

  31. 31.

    Foster I, Kesselman C, Tuecke S: The anatomy of the grid: enabling scalable virtual organizations. International Journal of High Performance Computing Applications 2001,15(3):200-222. 10.1177/109434200101500302

    Article  Google Scholar 

  32. 32.

    Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D: SETI@home: an experiment in public-resource computing. Communications of the ACM 2002,45(11):56-61. 10.1145/581571.581573

    Article  Google Scholar 

  33. 33.

    Gupta A, Lin B, Dinda PA: Measuring and understanding user comfort with resource borrowing. Proceedings of the 13th IEEE International Symposium on High Performance Distributed Computing, June 2004, Honolulu, Hawaii, USA 214–224.

    Chapter  Google Scholar 

  34. 34.

    Morán F, Preda M, Lafruit G, Villegas P, Berretty R-P: A content adaptation approach for on-line gaming on various networks and terminals. Proceedings of International Digital Games Conference (iDiG '06), September 2006, Portalegre, Portugal 233–236.

    Google Scholar 

  35. 35.

    Dinda PA, O'Hallaron DR: Host load prediction using linear models. Cluster Computing 2000,3(4):265-280. 10.1023/A:1019048724544

    Article  Google Scholar 

  36. 36.

    Wolski R, Spring NT, Hayes J: The network weather service: a distributed resource performance forecasting service for metacomputing. Future Generation Computer Systems 1999,15(5-6):757-768. 10.1016/S0167-739X(99)00025-4

    Article  Google Scholar 

  37. 37.

    Lüling R, Monien B, Ramme F: Load balancing in large networks: a comparative study. Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing, December 1991, Dallas, Tex, USA 686–689.

    Chapter  Google Scholar 

  38. 38.

    Wessels D, Claffy K: RFC 2187: Application of Internet Cache Protocol (ICP), version 2. 1997.

    Google Scholar 

  39. 39.

    ISO/IEC JTC1/SC29/WG11 1999.

  40. 40.

    Le Feuvre J: GPAC.

  41. 41.

    van Berkel C, Clarke J: Characterization and optimization of 3D-LCD module design. Stereoscopic Displays and Virtual Reality Systems IV, February 1997, San Jose, Calif, USA, Proceedings of SPIE 3012: 179–186.

    Article  Google Scholar 

  42. 42.

    Redert A, de Beeck MO, Fehn C, et al.: ATTEST: advanced three-dimensional television system technologies. Proceedings of 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT '02), June 2002, Padova, Italy 313–319.

    Chapter  Google Scholar 

  43. 43.

    Fehn C, Kauff P, de Beeck MO, et al.: An evolutionary and optimised approach on 3D-TV. Proceedings of International Broadcast Conference (IBC '02), September 2002, Amsterdam, The Netherlands 357–365.

    Google Scholar 

  44. 44.

    Berretty R-P, Peters FJ, Volleberg GTG: Real time rendering for multiview autostereoscopic displays. Stereoscopic Displays and Virtual Reality Systems XIII, January 2006, San Jose, Calif, USA, Proceedings of SPIE 6055: 208–219.

    Google Scholar 

  45. 45.

    Rajae-Joordens R, Langendijk E, Wilinski P, Heynderickx I: Added value of a multi-view auto-stereoscopic 3D display in gaming applications. Proceedings of the 12th International Display Workshops in Conjunction with Asia Display (IDW/AD '05), December 2005, Takamatsu, Japan 1731–1734.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Francisco Morán.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Morán, F., Preda, M., Lafruit, G. et al. 3D Game Content Distributed Adaptation in Heterogeneous Environments. EURASIP J. Adv. Signal Process. 2007, 093027 (2007).

Download citation


  • Cell Phone
  • Heterogeneous Environment
  • Heterogeneous Network
  • Content Adaptation
  • Content Representation