- Research Article
- Open access
- Published:
Arabic Handwritten Word Recognition Using HMMs with Explicit State Duration
EURASIP Journal on Advances in Signal Processing volume 2008, Article number: 247354 (2007)
Abstract
We describe an offline unconstrained Arabic handwritten word recognition system based on segmentation-free approach and discrete hidden Markov models (HMMs) with explicit state duration. Character durations play a significant part in the recognition of cursive handwriting. The duration information is still mostly disregarded in HMM-based automatic cursive handwriting recognizers due to the fact that HMMs are deficient in modeling character durations properly. We will show experimentally that explicit state duration modeling in the HMM framework can significantly improve the discriminating capacity of the HMMs to deal with very difficult pattern recognition tasks such as unconstrained Arabic handwriting recognition. In order to carry out the letter and word model training and recognition more efficiently, we propose a new version of the Viterbi algorithm taking into account explicit state duration modeling. Three distributions (Gamma, Gauss, and Poisson) for the explicit state duration modeling have been used, and a comparison between them has been reported. To perform word recognition, the described system uses an original sliding window approach based on vertical projection histogram analysis of the word and extracts a new pertinent set of statistical and structural features from the word image. Several experiments have been performed using the IFN/ENIT benchmark database and the best recognition performances achieved by our system outperform those reported recently on the same database.
Publisher note
To access the full article, please see PDF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Benouareth, A., Ennaji, A. & Sellami, M. Arabic Handwritten Word Recognition Using HMMs with Explicit State Duration. EURASIP J. Adv. Signal Process. 2008, 247354 (2007). https://doi.org/10.1155/2008/247354
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2008/247354