- Research Article
- Open access
- Published:
Iterative Estimation Algorithms Using Conjugate Function Lower Bound and Minorization-Maximization with Applications in Image Denoising
EURASIP Journal on Advances in Signal Processing volume 2008, Article number: 429128 (2008)
Abstract
A fundamental problem in signal processing is to estimate signal from noisy observations. This is usually formulated as an optimization problem. Optimizations based on variational lower bound and minorization-maximization have been widely used in machine learning research, signal processing, and statistics. In this paper, we study iterative algorithms based on the conjugate function lower bound (CFLB) and minorization-maximization (MM) for a class of objective functions. We propose a generalized version of these two algorithms and show that they are equivalent when the objective function is convex and differentiable. We then develop a CFLB/MM algorithm for solving the MAP estimation problems under a linear Gaussian observation model. We modify this algorithm for wavelet-domain image denoising. Experimental results show that using a single wavelet representation the performance of the proposed algorithms makes better than that of the bishrinkage algorithm which is arguably one of the best in recent publications. Using complex wavelet representations, the performance of the proposed algorithm is very competitive with that of the state-of-the-art algorithms.
Publisher note
To access the full article, please see PDF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Deng, G., Ng, WY. Iterative Estimation Algorithms Using Conjugate Function Lower Bound and Minorization-Maximization with Applications in Image Denoising. EURASIP J. Adv. Signal Process. 2008, 429128 (2008). https://doi.org/10.1155/2008/429128
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2008/429128