Skip to main content

Advertisement

Independent Component Analysis for Magnetic Resonance Image Analysis

Article metrics

Abstract

Independent component analysis (ICA) has recently received considerable interest in applications of magnetic resonance (MR) image analysis. However, unlike its applications to functional magnetic resonance imaging (fMRI) where the number of data samples is greater than the number of signal sources to be separated, a dilemma encountered in MR image analysis is that the number of MR images is usually less than the number of signal sources to be blindly separated. As a result, at least two or more brain tissue substances are forced into a single independent component (IC) in which none of these brain tissue substances can be discriminated from another. In addition, since the ICA is generally initialized by random initial conditions, the final generated ICs are different. In order to resolve this issue, this paper presents an approach which implements the over-complete ICA in conjunction with spatial domain-based classification so as to achieve better classification in each of ICA-demixed ICs. In order to demonstrate the proposed over-complete ICA, (OC-ICA) experiments are conducted for performance analysis and evaluation. Results show that the OC-ICA implemented with classification can be very effective, provided the training samples are judiciously selected.

Publisher note

To access the full article, please see PDF.

Author information

Correspondence to Clayton Chi-Chang Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ouyang, Y., Chen, H., Chai, J. et al. Independent Component Analysis for Magnetic Resonance Image Analysis. EURASIP J. Adv. Signal Process. 2008, 780656 (2008) doi:10.1155/2008/780656

Download citation

Keywords

  • Magnetic Resonance Image
  • Image Analysis
  • Information Technology
  • Brain Tissue
  • Performance Analysis