- Research Article
- Open access
- Published:
A Cascade of Boosted Generative and Discriminative Classifiers for Vehicle Detection
EURASIP Journal on Advances in Signal Processing volume 2008, Article number: 782432 (2008)
Abstract
We present an algorithm for the on-board vision vehicle detection problem using a cascade of boosted classifiers. Three families of features are compared: the rectangular filters (Haar-like features), the histograms of oriented gradient (HoG), and their combination (a concatenation of the two preceding features). A comparative study of the results of the generative (HoG features), discriminative (Haar-like features) detectors, and of their fusion is presented. These results show that the fusion combines the advantages of the other two detectors: generative classifiers eliminate "easily" negative examples in the early layers of the cascade, while in the later layers, the discriminative classifiers generate a fine decision boundary removing the negative examples near the vehicle model. The best algorithm achieves good performances on a test set containing some 500 vehicle images: the detection rate is about 94% and the false-alarm rate per image is 0.0003.
Publisher note
To access the full article, please see PDF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Negri, P., Clady, X., Hanif, S.M. et al. A Cascade of Boosted Generative and Discriminative Classifiers for Vehicle Detection. EURASIP J. Adv. Signal Process. 2008, 782432 (2008). https://doi.org/10.1155/2008/782432
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2008/782432