Skip to main content

Optimal Signal Reconstruction Using the Empirical Mode Decomposition


The empirical mode decomposition (EMD) was recently proposed as a new time-frequency analysis tool for nonstationary and nonlinear signals. Although the EMD is able to find the intrinsic modes of a signal and is completely self-adaptive, it does not have any implication on reconstruction optimality. In some situations, when a specified optimality is desired for signal reconstruction, a more flexible scheme is required. We propose a modified method for signal reconstruction based on the EMD that enhances the capability of the EMD to meet a specified optimality criterion. The proposed reconstruction algorithm gives the best estimate of a given signal in the minimum mean square error sense. Two different formulations are proposed. The first formulation utilizes a linear weighting for the intrinsic mode functions (IMF). The second algorithm adopts a bidirectional weighting, namely, it not only uses weighting for IMF modes, but also exploits the correlations between samples in a specific window and carries out filtering of these samples. These two new EMD reconstruction methods enhance the capability of the traditional EMD reconstruction and are well suited for optimal signal recovery. Examples are given to show the applications of the proposed optimal EMD algorithms to simulated and real signals.

Publisher note

To access the full article, please see PDF.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kenneth E. Barner.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Weng, B., Barner, K.E. Optimal Signal Reconstruction Using the Empirical Mode Decomposition. EURASIP J. Adv. Signal Process. 2008, 845294 (2008).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: