Skip to main content

Evaluating Pavement Cracks with Bidimensional Empirical Mode Decomposition


Crack evaluation is essential for effective classification of pavement cracks. Digital images of pavement cracks have been analyzed using techniques such as fuzzy set theory and neural networks. Bidimensional empirical mode decomposition (BEMD), a new image analysis method recently developed, can potentially be used for pavement crack evaluation. BEMD is an extension of the empirical mode decomposition (EMD), which can decompose nonlinear and nonstationary signals into basis functions called intrinsic mode functions (IMFs). IMFs are monocomponent functions that have well-defined instantaneous frequencies. EMD is a sifting process that is nonparametric and data driven; it does not depend on an a priori basis set. It is able to remove noise from signals without complicated convolution processes. BEMD decomposes an image into two-dimensional IMFs. The present paper explores pavement crack detection using BEMD together with the Sobel edge detector. A number of images are filtered with BEMD to remove noise, and the residual image analyzed with the Sobel edge detector for crack detection. The results are compared with results from the Canny edge detector, which uses a Gaussian filter for image smoothing before performing edge detection. The objective is to qualitatively explore how well BEMD is able to smooth an image for more effective edge detection with the Sobel method.

Publisher note

To access the full article, please see PDF.

Author information



Corresponding author

Correspondence to Nii Attoh-Okine.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Ayenu-Prah, A., Attoh-Okine, N. Evaluating Pavement Cracks with Bidimensional Empirical Mode Decomposition. EURASIP J. Adv. Signal Process. 2008, 861701 (2008).

Download citation


  • Edge Detector
  • Empirical Mode Decomposition
  • Instantaneous Frequency
  • Intrinsic Mode Function
  • Canny Edge