- Research Article
- Open access
- Published:
Fusion of Local Statistical Parameters for Buried Underwater Mine Detection in Sonar Imaging
EURASIP Journal on Advances in Signal Processing volume 2008, Article number: 876092 (2008)
Abstract
Detection of buried underwater objects, and especially mines, is a current crucial strategic task. Images provided by sonar systems allowing to penetrate in the sea floor, such as the synthetic aperture sonars (SASs), are of great interest for the detection and classification of such objects. However, the signal-to-noise ratio is fairly low and advanced information processing is required for a correct and reliable detection of the echoes generated by the objects. The detection method proposed in this paper is based on a data-fusion architecture using the belief theory. The input data of this architecture are local statistical characteristics extracted from SAS data corresponding to the first-, second-, third-, and fourth-order statistical properties of the sonar images, respectively. The interest of these parameters is derived from a statistical model of the sonar data. Numerical criteria are also proposed to estimate the detection performances and to validate the method.
Publisher note
To access the full article, please see PDF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Maussang, F., Rombaut, M., Chanussot, J. et al. Fusion of Local Statistical Parameters for Buried Underwater Mine Detection in Sonar Imaging. EURASIP J. Adv. Signal Process. 2008, 876092 (2008). https://doi.org/10.1155/2008/876092
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2008/876092