Skip to main content

Influence of Acoustic Feedback on the Learning Strategies of Neural Network-Based Sound Classifiers in Digital Hearing Aids

Abstract

Sound classifiers embedded in digital hearing aids are usually designed by using sound databases that do not include the distortions associated to the feedback that often occurs when these devices have to work at high gain and low gain margin to oscillation. The consequence is that the classifier learns inappropriate sound patterns. In this paper we explore the feasibility of using different sound databases (generated according to 18 configurations of real patients), and a variety of learning strategies for neural networks in the effort of reducing the probability of erroneous classification. The experimental work basically points out that the proposed methods assist the neural network-based classifier in reducing its error probability in more than 18%. This helps enhance the elderly user's comfort: the hearing aid automatically selects, with higher success probability, the program that is best adapted to the changing acoustic environment the user is facing.

Publisher note

To access the full article, please see PDF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucas Cuadra.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Cuadra, L., Alexandre, E., Gil-Pita, R. et al. Influence of Acoustic Feedback on the Learning Strategies of Neural Network-Based Sound Classifiers in Digital Hearing Aids. EURASIP J. Adv. Signal Process. 2009, 465189 (2009). https://doi.org/10.1155/2009/465189

Download citation

Keywords

  • Learn Strategy
  • Success Probability
  • Elderly User
  • Real Patient
  • Publisher Note