Open Access

A POMDP Framework for Coordinated Guidance of Autonomous UAVs for Multitarget Tracking

  • Scott A. Miller1Email author,
  • Zachary A. Harris1 and
  • Edwin K.P. Chong2
EURASIP Journal on Advances in Signal Processing20092009:724597

https://doi.org/10.1155/2009/724597

Received: 1 August 2008

Accepted: 1 December 2008

Published: 25 January 2009

Abstract

This paper discusses the application of the theory of partially observable Markov decision processes (POMDPs) to the design of guidance algorithms for controlling the motion of unmanned aerial vehicles (UAVs) with onboard sensors to improve tracking of multiple ground targets. While POMDP problems are intractable to solve exactly, principled approximation methods can be devised based on the theory that characterizes optimal solutions. A new approximation method called nominal belief-state optimization (NBO), combined with other application-specific approximations and techniques within the POMDP framework, produces a practical design that coordinates the UAVs to achieve good long-term mean-squared-error tracking performance in the presence of occlusions and dynamic constraints. The flexibility of the design is demonstrated by extending the objective to reduce the probability of a track swap in ambiguous situations.

Publisher note

To access the full article, please see PDF.

Authors’ Affiliations

(1)
Numerica Corporation
(2)
Department of Electrical and Computer Engineering (ECE), Colorado State University

Copyright

© Scott A. Miller et al. 2009

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.