Skip to main content

Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization


Imperfect channel state information degrades the performance of multiple-input multiple-output (MIMO) communications; its effects on single-user (SU) and multiuser (MU) MIMO transmissions are quite different. In particular, MU-MIMO suffers from residual interuser interference due to imperfect channel state information while SU-MIMO only suffers from a power loss. This paper compares the throughput loss of both SU and MU-MIMO in the broadcast channel due to delay and channel quantization. Accurate closed-form approximations are derived for achievable rates for both SU and MU-MIMO. It is shown that SU-MIMO is relatively robust to delayed and quantized channel information, while MU-MIMO with zero-forcing precoding loses its spatial multiplexing gain with a fixed delay or fixed codebook size. Based on derived achievable rates, a mode switching algorithm is proposed, which switches between SU and MU-MIMO modes to improve the spectral efficiency based on average signal-to-noise ratio (SNR), normalized Doppler frequency, and the channel quantization codebook size. The operating regions for SU and MU modes with different delays and codebook sizes are determined, and they can be used to select the preferred mode. It is shown that the MU mode is active only when the normalized Doppler frequency is very small, and the codebook size is large.

Publisher note

To access the full article, please see PDF.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Zhang, J., Heath, R.W., Kountouris, M. et al. Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization. EURASIP J. Adv. Signal Process. 2009, 802548 (2009).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: