Skip to main content

A Reconfigurable Architecture for Rotation Invariant Multi-View Face Detection Based on a Novel Two-Stage Boosting Method

Abstract

We present a reconfigurable architecture model for rotation invariant multi-view face detection based on a novel two-stage boosting method. A tree-structured detector hierarchy is designed to organize multiple detector nodes identifying pose ranges of faces. We propose a boosting algorithm for training the detector nodes. The strong classifier in each detector node is composed of multiple novelly designed two-stage weak classifiers. With a shared output space of multicomponents vector, each detector node deals with the multidimensional binary classification problems. The design of the hardware architecture which fully exploits the spatial and temporal parallelism is introduced in detail. We also study the reconfiguration of the architecture for finding an appropriate tradeoff among the hardware implementation cost, the detection accuracy, and speed. Experiments on FPGA show that high accuracy and marvelous speed are achieved compared with previous related works. The execution time speedups range from 14.68 to 20.86 for images with size of up to when our FPGA design (98 MHz) is compared with software solution on PC (Pentium 4 2.8 GHz).

Publisher note

To access the full article, please see PDF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinbo Xu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Xu, J., Dou, Y. & Pang, Z. A Reconfigurable Architecture for Rotation Invariant Multi-View Face Detection Based on a Novel Two-Stage Boosting Method. EURASIP J. Adv. Signal Process. 2009, 917354 (2009). https://doi.org/10.1155/2009/917354

Download citation

Keywords

  • Information Technology
  • Quantum Information
  • Face Detection
  • Full Article
  • Rotation Invariant
\