From: Impulse Noise Filtering Using Robust Pixel-Wise S-Estimate of Variance
Lena | Goldhill | Boats | Bridge | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Methods |
|
|
|
|
|
|
|
|
|
|
|
|
Noisy | 0.115 | 0.051 | 0.026 | 0.132 | 0.056 | 0.028 | 0.145 | 0.067 | 0.035 | 0.226 | 0.103 | 0.052 |
MED3 | 0.880 | 0.803 | 0.641 | 0.796 | 0.719 | 0.561 | 0.856 | 0.775 | 0.610 | 0.689 | 0.591 | 0.443 |
TSM | 0.944 | 0.801 | 0.491 | 0.919 | 0.773 | 0.477 | 0.928 | 0.777 | 0.478 | 0.861 | 0.715 | 0.456 |
ACWM | 0.958 | 0.864 | 0.638 | 0.926 | 0.820 | 0.594 | 0.946 | 0.841 | 0.611 | 0.870 | 0.748 | 0.535 |
SDROM | 0.951 | 0.830 | 0.593 | 0.928 | 0.801 | 0.574 | 0.941 | 0.811 | 0.575 | 0.884 | 0.755 | 0.539 |
PSM | 0.737 | 0.673 | 0.631 | 0.772 | 0.692 | 0.614 | 0.768 | 0.668 | 0.595 | 0.832 | 0.711 | 0.581 |
PWMAD | 0.958 | 0.860 | 0.447 | 0.923 | 0.803 | 0.420 | 0.942 | 0.835 | 0.438 | 0.868 | 0.730 | 0.416 |
Trilateral | 0.942 | 0.790 | 0.384 | 0.919 | 0.761 | 0.372 | 0.931 | 0.777 | 0.388 | 0.870 | 0.712 | 0.370 |
DWM | 0.949 | 0.892 | 0.776 | 0.920 | 0.837 | 0.701 | 0.934 | 0.863 | 0.734 | 0.843 | 0.734 | 0.583 |
FRINR | 0.948 | 0.892 | 0.811 | 0.916 | 0.814 | 0.704 | 0.943 | 0.864 | 0.754 | 0.874 | 0.726 | 0.565 |
GP | 0.960 | 0.891 | 0.685 | 0.930 | 0.844 | 0.639 | 0.949 | 0.870 | 0.661 | 0.872 | 0.767 | 0.572 |
ACWM-EPR | 0.959 | 0.864 | 0.573 | 0.933 | 0.826 | 0.554 | 0.949 | 0.847 | 0.555 | 0.859 | 0.760 | 0.531 |
ROLD-EPR | 0.947 | 0.908 | 0.791 | 0.932 | 0.868 | 0.720 | 0.941 | 0.874 | 0.727 | 0.896 | 0.756 | 0.571 |
PWS-EPR | 0.963 | 0.903 | 0.792 | 0.944 | 0.860 | 0.723 | 0.957 | 0.876 | 0.736 | 0.902 | 0.777 | 0.573 |